scholarly journals A Numerical Study on Gas Flow through Anisotropic Sierpinski Carpet with Slippage Effect

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shuxia Qiu ◽  
Lipei Zhang ◽  
Zhenhua Tian ◽  
Zhouting Jiang ◽  
Mo Yang ◽  
...  

A pore-scale model has been developed to study the gas flow through multiscale porous media based on a two-dimensional self-similar Sierpinski carpet. The permeability tensor with slippage effect is proposed, and the effects of complex configurations on gas permeability have been discussed. The present fractal model has been validated by comparison with theoretical models and available experimental data. The numerical results show that the flow field and permeability of the anisotropic Sierpinski model are different from that of the isotropic model, and the anisotropy of porous media can enhance gas permeability. The gas permeability of porous media increases with the increment of porosity, while it decreases with increased pore fractal dimension under fixed porosity. Furthermore, the gas slippage effect strengthens as the pore fractal dimension decreases. However, the relationship between the gas slippage effect and porosity is a nonmonotonic decreasing function because reduced pore size and enhanced flow resistance may be simultaneously involved with decreasing porosity. The proposed pore-scale fractal model can present insights on characterizing complex and multiscale structures of porous media and understanding gas flow mechanisms. The numerical results may provide useful guidelines for the applications of porous materials in oil and gas engineering, hydraulic engineering, chemical engineering, thermal power engineering, food engineering, etc.

Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050002
Author(s):  
KE CHEN ◽  
HE CHEN ◽  
PENG XU

The multiphase flow through unsaturated porous media and accurate estimation of relative permeability are significant for oil and gas reservoir, grounder water resource and chemical engineering, etc. A new fractal model is developed for the multiphase flow through unsaturated porous media, where multiscale pore structure is characterized by fractal scaling law and the trapped water in the pores is taken into account. And the analytical expression for relative permeability is derived accordingly. The relationships between the relative permeability and capillary head as well as saturation are determined. The proposed model is validated by comparison with 14 sets of experimental data, which indicates that the fractal model agrees well with experimental data. It has been found that the proposed fractal model shows evident advantages compared with BC-B model and VG-M model, especially for the porous media with fine content and texture. Further calculations show that water permeability decreases as the fractal dimension increases under fixed saturation because the cumulative volume fraction of small pores increases with the increment of the fractal dimension. The present fractal model for the relative permeability may be helpful to understand the multiphase flow through unsaturated porous media.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 133 ◽  
Author(s):  
Junjie Ren ◽  
Qiao Zheng ◽  
Ping Guo ◽  
Chunlan Zhao

In the development of tight gas reservoirs, gas flow through porous media usually takes place deep underground with multiple mechanisms, including gas slippage and stress sensitivity of permeability and porosity. However, little work has been done to simultaneously incorporate these mechanisms in the lattice Boltzmann model for simulating gas flow through porous media. This paper presents a lattice Boltzmann model for gas flow through porous media with a consideration of these effects. The apparent permeability and porosity are calculated based on the intrinsic permeability, intrinsic porosity, permeability modulus, porosity sensitivity exponent, and pressure. Gas flow in a two-dimensional channel filled with a homogeneous porous medium is simulated to validate the present model. Simulation results reveal that gas slippage can enhance the flow rate in tight porous media, while stress sensitivity of permeability and porosity reduces the flow rate. The simulation results of gas flow in a porous medium with different mineral components show that the gas slippage and stress sensitivity of permeability and porosity not only affect the global velocity magnitude, but also have an effect on the flow field. In addition, gas flow in a porous medium with fractures is also investigated. It is found that the fractures along the pressure-gradient direction significantly enhance the total flow rate, while the fractures perpendicular to the pressure-gradient direction have little effect on the global permeability of the porous medium. For the porous medium without fractures, the gas-slippage effect is a major influence factor on the global permeability, especially under low pressure; for the porous medium with fractures, the stress-sensitivity effect plays a more important role in gas flow.


2020 ◽  
Vol 23 (11) ◽  
pp. 1065-1079
Author(s):  
Yu Shi ◽  
Xiaona Yang ◽  
Shugang Li ◽  
Pengxiang Zhao ◽  
Lei Qin

2012 ◽  
Vol 560-561 ◽  
pp. 1103-1113
Author(s):  
Zheng Gang Xiao ◽  
Wei Dong He ◽  
San Jiu Ying ◽  
Fu Ming Xu

To acquire better understanding of the early ignition phenomena in 100mm ignition simulator loaded with packed propellant bed, a theoretical model of ignition gas flow through rigid porous media is developed. Three pressure gauges are installed in the lateral side of ignition simulator for chamber pressure measurements after ignition. The pseupropellant loaded in the chamber is similar to the standard 13/19 single-base cylindrical propellant in size. It is composed of rigid ceramic composite with low thermo conductivity. It is assumed that the pseupropellant bed is rigid in contrast to the previous elastic porous media assumption. The calculated pressure values can be verified by the experimental data well at the low loading density of pseupropellant bed of 0.18 g/cm3. However, there is still error between the experimental and calculated results in the early pressure peak position close to the ignition primer when the loading density of pseupropellant bed increases to 0.73 and 1.06g/cm3, due to the change of local permeability of pseupropellant bed at high loading density, which is assumed a constant in the model for the modeling easily. The calculations can enable better understanding of physical processes of ignition gas flow in the ignition simulator loaded with the pseupropellant bed.


Fractals ◽  
2021 ◽  
pp. 2150076
Author(s):  
BOQI XIAO ◽  
QIWEN HUANG ◽  
BOMING YU ◽  
GONGBO LONG ◽  
HANXIN CHEN

Oxygen diffusion in porous media (ODPM) with rough surfaces (RS) under dry and wet conditions is of great interest. In this work, a novel fractal model for the oxygen effective diffusivity of porous media with RS under dry and wet conditions is proposed. The proposed fractal model is expressed in terms of relative roughness, the water saturation, fractal dimension for tortuosity of tortuous capillaries, fractal dimension for pores, and porosity. It is observed that the normalized oxygen diffusivity decreases with increasing relative roughness and fractal dimension for capillary tortuosity. It is found that the normalized oxygen diffusivity increases with porosity and fractal dimension for pore area. Besides, it is seen that that the normalized oxygen diffusivity under wet condition decreases with increasing water saturation. The determined normalized oxygen diffusivity is in good agreement with experimental data and existing models reported in the literature. With the proposed analytical fractal model, the physical mechanisms of oxygen diffusion through porous media with RS under dry and wet conditions are better elucidated. Every parameter in the proposed fractal model has clear physical meaning, with no empirical constant.


Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050025
Author(s):  
PENG XU ◽  
LIPEI ZHANG ◽  
BINQI RAO ◽  
SHUXIA QIU ◽  
YUQING SHEN ◽  
...  

Hydraulic tortuosity is one of the key parameters for evaluating effective transport properties of natural and artificial porous media. A pore-scale model is developed for fluid flow through porous media based on fractal geometry, and a novel analytical tortuosity–porosity correlation is presented. Numerical simulations are also performed on two-dimensional Sierpinski carpet model. The proposed fractal model is validated by comparison with numerical results and available experimental data. Results show that hydraulic tortuosity depends on both statistical and morphological characteristics of porous media. The exponents for the scaling law between tortuosity and porosity depend on pore size distribution and tortuous fractal dimension. It has been found that hydraulic tortuosity indicates evident anisotropy for asymmetrical particle arrangements under the same statistical characteristics of porous media. The present work may be helpful to understand the transport mechanisms of porous materials and provide guidelines for the development of oil and gas reservoir, water resource and chemical engineering, etc.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zuyang Ye ◽  
Wang Luo ◽  
Shibing Huang ◽  
Yuting Chen ◽  
Aiping Cheng

The relative permeability and saturation relationships through fractures are fundamental for modeling multiphase flow in underground geological fractured formations. In contrast to the traditional straight capillary model from porous media, the realistic flow paths in rough-walled fractures are tortuous. In this study, a fractal relationship between relative permeability and saturation of rough-walled fractures is proposed associated with the fractal characteristics of tortuous parallel capillary plates, which can be generalized to several existing models. Based on the consideration that the aperture distribution of rough-walled fracture can be represented by Gaussian and lognormal distributions, aperture-based expressions between relative permeability and saturation are explicitly derived. The developed relationships are validated by the experimental observations on Gaussian distributed fractures and numerical results on lognormal distributed fractures, respectively.


Fractals ◽  
2018 ◽  
Vol 26 (02) ◽  
pp. 1840015 ◽  
Author(s):  
BOQI XIAO ◽  
XIAN ZHANG ◽  
WEI WANG ◽  
GONGBO LONG ◽  
HANXIN CHEN ◽  
...  

In this work, considering the effect of porosity, pore size, saturation of water and tortuosity fractal dimension, an analytical model for the capillary pressure and water relative permeability is derived in unsaturated porous rocks. Besides, the formulas of calculating the capillary pressure and water relative permeability are given by taking into account the fractal distribution of pore size and tortuosity of capillaries. It can be seen that the capillary pressure for water phase decreases with the increase of saturation in unsaturated porous rocks. It is found that the capillary pressure for water phase decreases as the tortuosity fractal dimension decreases. It is further seen that the capillary pressure for water phase increases with the decrease of porosity, and at low porosity, the capillary pressure increases sharply with the decrease of porosity. Besides, it can be observed that the water relative permeability increases with the increase of saturation in unsaturated porous rocks. This predicted the capillary pressure and water relative permeability of unsaturated porous rocks based on the proposed models which are in good agreement with the experimental data and model predictions reported in the literature. The proposed model improved the understanding of the physical mechanisms of water flow through unsaturated porous rocks.


Sign in / Sign up

Export Citation Format

Share Document