scholarly journals Option Pricing for Path-Dependent Options with Assets Exposed to Multiple Defaults Risk

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Taoshun He

In the present paper, we derive analytical formulas for barrier and lookback options with underlying assets exposed to multiple defaults risks which include exogenous counterparty default risk and endogenous default risk. The endogenous default risk leads the asset price drop to zero and the exogenous counterparty default risk induces a drop in the asset price, but the asset can still be traded after this default time. An original technique is developed to valuate the barrier and lookback options by first conditioning on the predefault and the afterdefault time and then obtaining the unconditional analytic formulas for their price. We also compare the pricing results of our model with the default-free option model and exogenous counterparty default risk option model.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Taoshun He

We derive analytical formulas for European call and put options on underlying assets that are exposed to double defaults risks which include exogenous counterparty default risk and endogenous default risk. The endogenous default risk leads the asset price to drop to zero and the exogenous counterparty default risk induces a drop in the asset price, but the asset can still be traded after this default time. A novel technique is developed to evaluate the European call and put options by first conditioning on the predefault and the postdefault time and then obtaining the unconditional analytic formulas for their price. We also compare the pricing results of our model with default-free option model and counterparty default risk option model.


2020 ◽  
Vol 14 (2) ◽  
pp. 119
Author(s):  
Marcelo González A. ◽  
Antonio Parisi F. ◽  
Arturo Rodríguez P.

Looback options are path dependent contingent claims whose payoffs depend on the extrema of the underlying asset price over a certain time interval. In this note we compare the performance of two Monte Carlo techniques to price lookback options, a crude Monte Carlo estimator and Antithetic variate estimator. We find that the Antithetic estimator performs better under a variety of performance measures.


Author(s):  
Zhaopeng Liu ◽  

A lookback option is a path-dependent option, offering a payoff that depends on the maximum or minimum value of the underlying asset price over the life of the option. This paper presents a new mean-reverting uncertain stock model with a floating interest rate to study the lookback option price, in which the processing of the interest rate is assumed to be the uncertain counterpart of the Cox–Ingersoll–Ross (CIR) model. The CIR model can reflect the fluctuations in the interest rate and ensure that such rate is positive. Subsequently, lookback option pricing formulas are derived through the α-path method and some mathematical properties of the uncertain option pricing formulas are discussed. In addition, several numerical examples are given to illustrate the effectiveness of the proposed model.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Li Yan

This paper gives analytical formulas for lookback and barrier options on underlying assets that are exposed to a counterparty risk. The counterparty risk induces a drop in the asset price, but the asset can still be traded after this default time. A novel technique is developed to valuate the lookback and barrier options by first conditioning on the predefault and the postdefault time and then obtain the unconditional analytic formulas for their prices.


Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 828 ◽  
Author(s):  
Jixia Wang ◽  
Yameng Zhang

This paper is dedicated to the study of the geometric average Asian call option pricing under non-extensive statistical mechanics for a time-varying coefficient diffusion model. We employed the non-extensive Tsallis entropy distribution, which can describe the leptokurtosis and fat-tail characteristics of returns, to model the motion of the underlying asset price. Considering that economic variables change over time, we allowed the drift and diffusion terms in our model to be time-varying functions. We used the I t o ^ formula, Feynman–Kac formula, and P a d e ´ ansatz to obtain a closed-form solution of geometric average Asian option pricing with a paying dividend yield for a time-varying model. Moreover, the simulation study shows that the results obtained by our method fit the simulation data better than that of Zhao et al. From the analysis of real data, we identify the best value for q which can fit the real stock data, and the result shows that investors underestimate the risk using the Black–Scholes model compared to our model.


2016 ◽  
Vol 19 (02) ◽  
pp. 1650012 ◽  
Author(s):  
J. X. JIANG ◽  
R. H. LIU ◽  
D. NGUYEN

This paper develops simple and efficient tree approaches for option pricing in switching jump diffusion models where the rates of switching are assumed to depend on the underlying asset price process. The models generalize many existing models in the literature and in particular, the Markovian regime-switching models with jumps. The proposed trees grow linearly as the number of tree steps increases. Conditions on the choices of key parameters for the tree design are provided that guarantee the positivity of branch probabilities. Numerical results are provided and compared with results reported in the literature for the Markovian regime-switching cases. The reported numerical results for the state-dependent switching models are new and can be used for comparison in the future.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 780-785 ◽  
Author(s):  
Sunday O. Edeki ◽  
Tanki Motsepa ◽  
Chaudry Masood Khalique ◽  
Grace O. Akinlabi

Abstract The Greek parameters in option pricing are derivatives used in hedging against option risks. In this paper, the Greeks of the continuous arithmetic Asian option pricing model are derived. The derivation is based on the analytical solution of the continuous arithmetic Asian option model obtained via a proposed semi-analytical method referred to as Laplace-Adomian decomposition method (LADM). The LADM gives the solution in explicit form with few iterations. The computational work involved is less. Nonetheless, high level of accuracy is not neglected. The obtained analytical solutions are in good agreement with those of Rogers & Shi (J. of Applied Probability 32: 1995, 1077-1088), and Elshegmani & Ahmad (ScienceAsia, 39S: 2013, 67–69). The proposed method is highly recommended for analytical solution of other forms of Asian option pricing models such as the geometric put and call options, even in their time-fractional forms. The basic Greeks obtained are the Theta, Delta, Speed, and Gamma which will be of great help to financial practitioners and traders in terms of hedging and strategy.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 291 ◽  
Author(s):  
Nikitas Stamatopoulos ◽  
Daniel J. Egger ◽  
Yue Sun ◽  
Christa Zoufal ◽  
Raban Iten ◽  
...  

We present a methodology to price options and portfolios of options on a gate-based quantum computer using amplitude estimation, an algorithm which provides a quadratic speedup compared to classical Monte Carlo methods. The options that we cover include vanilla options, multi-asset options and path-dependent options such as barrier options. We put an emphasis on the implementation of the quantum circuits required to build the input states and operators needed by amplitude estimation to price the different option types. Additionally, we show simulation results to highlight how the circuits that we implement price the different option contracts. Finally, we examine the performance of option pricing circuits on quantum hardware using the IBM Q Tokyo quantum device. We employ a simple, yet effective, error mitigation scheme that allows us to significantly reduce the errors arising from noisy two-qubit gates.


2018 ◽  
Vol 54 (2) ◽  
pp. 695-727 ◽  
Author(s):  
Bruno Feunou ◽  
Cédric Okou

Advances in variance analysis permit the splitting of the total quadratic variation of a jump-diffusion process into upside and downside components. Recent studies establish that this decomposition enhances volatility predictions and highlight the upside/downside variance spread as a driver of the asymmetry in stock price distributions. To appraise the economic gain of this decomposition, we design a new and flexible option pricing model in which the underlying asset price exhibits distinct upside and downside semivariance dynamics driven by the model-free proxies of the variances. The new model outperforms common benchmarks, especially the alternative that splits the quadratic variation into diffusive and jump components.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Wai-Ki Ching ◽  
Tak-Kuen Siu ◽  
Li-Min Li

We consider the pricing of exotic options when the price dynamics of the underlying risky asset are governed by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM). We assume that the market interest rate, the drift, and the volatility of the underlying risky asset's return switch over time according to the states of the HOMM, which are interpreted as the states of an economy. We will then employ the well-known tool in actuarial science, namely, the Esscher transform to determine an equivalent martingale measure for option valuation. Moreover, we will also investigate the impact of the high-order effect of the states of the economy on the prices of some path-dependent exotic options, such as Asian options, lookback options, and barrier options.


Sign in / Sign up

Export Citation Format

Share Document