scholarly journals Computationally Efficient Ambiguity-Free Two-Dimensional DOA Estimation Method for Coprime Planar Array: RD-Root-MUSIC Algorithm

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Luo Chen ◽  
Changbo Ye ◽  
Baobao Li

While the two-dimensional (2D) spectral peak search suffers from expensive computational burden in direction of arrival (DOA) estimation, we propose a reduced-dimensional root-MUSIC (RD-Root-MUSIC) algorithm for 2D DOA estimation with coprime planar array (CPA), which is computationally efficient and ambiguity-free. Different from the conventional 2D DOA estimation algorithms based on subarray decomposition, we exploit the received data of the two subarrays jointly by mapping CPA to the full array of the CPA (FCPA), which contributes to the enhanced degrees of freedom (DOFs) and improved estimation performance. In addition, due to the ambiguity-free characteristic of the FCPA, the extra ambiguity elimination operation can be avoided. Furthermore, we convert the 2D spectral search process into 1D polynomial rooting via reduced-dimension transformation, which substantially reduces the computational complexity while preserving the estimation accuracy. Finally, numerical simulations demonstrate the superiority of the proposed algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.



2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Feng Zhao ◽  
Xia Hao ◽  
Hongbin Chen

The estimation accuracy of direction-of-departure (DOD) and direction-of-arrival (DOA) is reduced because of Doppler shifts caused by the high-speed moving sources. In this paper, an improved DOA estimation method which combines the forward-backward spatial smoothing (FBSS) technique with the MUSIC algorithm is proposed for virtual MIMO array signals in high mobility scenarios. Theoretical analysis and experiment results demonstrate that the resolution capability can be significantly improved by using the proposed method compared to the MUSIC algorithm for the moving sources with limited array elements, especially the DOA which can still be accurately estimated when the sources are much closely spaced.



2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Guimei Zheng ◽  
Jun Tang

We study two-dimensional direction of arrival (2D-DOA) estimation problem of monostatic MIMO radar with the receiving array which consists of electromagnetic vector sensors (EMVSs). The proposed angle estimation algorithm can be applied to the arbitrary and unknown array configuration, which can be summarized as follows. Firstly, EMVSs in the receiver of a monostatic MIMO radar are used to measure all six electromagnetic-field components of an incident wavefield. The vector sensor array with the six unknown electromagnetic-field components is divided into six spatially identical subarrays. Secondly, ESPRIT is utilized to estimate the rotational invariant factors (RIFs). Parts of the RIFs are picked up to restore the source’s electromagnetic-field vector. Last, a vector cross product operation is performed between electric field and magnetic field to obtain the Pointing vector, which can offer the 2D-DOA estimation. Prior knowledge of array elements’ positions and angle searching procedure are not necessary for the proposed 2D-DOA estimation method. Simulation results prove the validity of the proposed method.



2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yang-Yang Dong ◽  
Xin Chang

Although L-shaped array can provide good angle estimation performance and is easy to implement, its two-dimensional (2D) direction-of-arrival (DOA) performance degrades greatly in the presence of mutual coupling. To deal with the mutual coupling effect, a novel 2D DOA estimation method for L-shaped array with low computational complexity is developed in this paper. First, we generalize the conventional mutual coupling model for L-shaped array and compensate the mutual coupling blindly via sacrificing a few sensors as auxiliary elements. Then we apply the propagator method twice to mitigate the effect of strong source signal correlation effect. Finally, the estimations of azimuth and elevation angles are achieved simultaneously without pair matching via the complex eigenvalue technique. Compared with the existing methods, the proposed method is computationally efficient without spectrum search or polynomial rooting and also has fine angle estimation performance for highly correlated source signals. Theoretical analysis and simulation results have demonstrated the effectiveness of the proposed method.



Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

AbstractAiming at the problem that traditional direction of arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degrees of freedom (DOF), a new method for 2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA) is proposed. First of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. This method is based on a new MIMO array-based co-prime array model (MIMO-CA), which improves the accuracy of multi-source estimation when the number of array elements is limited, and obtains a larger array aperture with a smaller number of array elements, and improves the estimation accuracy of 2-D DOA. Finally, the effectiveness and reliability of the proposed SM-MIMO-CA method in improving the DOF of array and DOA accuracy are verified by experiments.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chunxi Liu ◽  
Zhikun Chen ◽  
Dongliang Peng

Compared with uniform arrays, a generalized sparse array (GSA) can obtain larger array aperture because of its larger element spacing, which improves the accuracy of DOA estimation. At present, most DOA estimation algorithms are only suitable for the uniform arrays, while a few DOA estimate algorithms that can be applied to the GSA are unsatisfactory in terms of computational speed and accuracy. To compensate this deficiency, an improved DOA estimation algorithm which can be applied to the GSA is proposed in this paper. First, the received signal model of the GSA is established. Then, a fast DOA estimation method is derived by combining the weighted noise subspace algorithm (WNSF) with the concept of “transform domain” (TD). Theoretical analysis and simulation results show that compared with the traditional multiple signal classification (MUSIC) algorithm and the traditional WNSF algorithm, the proposed algorithm has higher accuracy and lower computational complexity.



2012 ◽  
Vol 195-196 ◽  
pp. 661-665
Author(s):  
Ping Tan ◽  
Zhi Yao Zhou ◽  
Yu Feng Zhang ◽  
Ye Luo ◽  
Hong Ma

It is needed to realize high resolution two dimensional (2D) direction of arrivals (DOA) estimation in determining the location of the mobile with high accuracy. In this paper, the problem of estimating the 2D DOA using uniform circular array (UCA) is investigated. Performance of 2D DOA estimation based on the real-valued unitary transformation MUSIC algorithm for UCA is presented, especially focusing on DOA estimation of multiple correlated signals.Then the validations of Unitary Transformation MUSIC algorithm are performed based on the measurement data in a wireless location system.



2021 ◽  
Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

Abstract Aiming at the problem that traditional Direction of Arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degree of freedom, a new method of 2-D DOA estimation based on coprime array MIMO Radar (SA-MIMO-CA). Frist of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. The array model uses a special irregular array as the transmitting array and a uniform linear array as the receiving array. Besides, in order to reduce complexity and improve the accuracy of two-dimensional DOA estimation, a new two-dimensional DOA estimation method based on sparse array is proposed. This method uses the sparse array topology of virtual array elements to analyze a larger number of information sources, and combines the compressed sensing method to process the sparse array, and obtains a larger array aperture with a smaller number of array elements, and improves the resolution of the azimuth angle. This method improves the DOA estimation accuracy and reduces the complexity. Finally, experiments verify the effectiveness and reliability of the SA-MIMO-CA method in improving the degree of freedom of the array, reducing the complexity, and improving the accuracy of the DOA.



2014 ◽  
Vol 1049-1050 ◽  
pp. 1788-1791
Author(s):  
Xiao Feng Qiu ◽  
Xiao Fei Zhang

This paper presents the model of satellite planar array, and interference localization via direction of arrival (DOA) estimation. We derive a dimension reduction DOA estimaton algorithm therein. The proposed algorithm, which only requires a one-dimensional local searching, can avoid the high computational cost within two-dimensional multiple signal classification (2D-MUSIC) algorithm. We illustrate that the proposed algorithm has better angle estimation performance than estimation method of signal parameters via rotational invariance technique (ESPRIT) algorithm, and has very close angle estimation performance to 2D-MUSIC algorithm. Furthermore, our algorithm requires no extra pairing. Simulation results present the usefulness of our algorithm.



2019 ◽  
Vol 28 (03) ◽  
pp. 1950049
Author(s):  
Lingyun Xu ◽  
Fangqing Wen

Two-dimensional direction-of-arrival (2D-DOA) estimation for uniform rectangular array (URA) is a canonical problem with numerous applications, e.g., wireless communications, sonar and radar systems. The conventional 2D-DOA estimators usually are derived with the assumption of ideal arrays. However, in practice, the arrays may not be well calibrated and suffer from unknown mutual coupling. Using the conventional estimators may lead to low accuracy estimation and high computational complexity in the condition of large number of array elements. In this paper, a novel real-valued parallel factor (PARAFAC) decomposition algorithm is proposed to tackle this problem. The proposed algorithm has better angle estimation performance than the multiple signal classification (MUSIC) algorithm, estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and conventional PARAFAC algorithm. But it has lower complexity than MUSIC algorithm. Moreover, the proposed algorithm can obtain automatically paired 2D-DOA estimation, and it is suitable to coherent or closely spaced signals and can eliminate the mutual coupling. Simulation results verify the effectiveness of the proposed algorithm.



Sign in / Sign up

Export Citation Format

Share Document