scholarly journals Joint Virtual Energy Storage Modeling with Electric Vehicle Participation in Energy Local Area Smart Grid

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Rui-Cheng Dai ◽  
Bi Zhao ◽  
Xiao-Di Zhang ◽  
Jun-Wei Yu ◽  
Bo Fan ◽  
...  

In this research, the joint virtual energy storage modeling with electric vehicle participation in energy local area Smart Grid is considered. This article first constructs a virtual energy storage model and a joint virtual energy storage model for air conditioning and electric vehicles. Therefore, for the optimization problem of virtual energy storage power, a continuous rolling optimization algorithm to determine the feasible solution of the high-dimensional complex constraint optimization problem is proposed to solve the optimization problem. Finally, the analysis, for example, illustrates the economics of joint virtual energy storage in the Smart Grid. The results prove that air conditioning and electric vehicles have the ability to jointly participate in virtual energy storage, and the comparison proves that joint virtual energy storage can effectively improve the economics of electricity consumption.

2017 ◽  
Vol 31 (34) ◽  
pp. 1750324 ◽  
Author(s):  
Hong Xiao ◽  
Hai-Jun Huang ◽  
Tie-Qiao Tang

Electric vehicle (EV) has become a potential traffic tool, which has attracted researchers to explore various traffic phenomena caused by EV (e.g. congestion, electricity consumption, etc.). In this paper, we study the energy consumption (including the fuel consumption and the electricity consumption) and emissions of heterogeneous traffic flow (that consists of the traditional vehicle (TV) and EV) under three traffic situations (i.e. uniform flow, shock and rarefaction waves, and a small perturbation) from the perspective of macro traffic flow. The numerical results show that the proportion of electric vehicular flow has great effects on the TV’s fuel consumption and emissions and the EV’s electricity consumption, i.e. the fuel consumption and emissions decrease while the electricity consumption increases with the increase of the proportion of electric vehicular flow. The results can help us better understand the energy consumption and emissions of the heterogeneous traffic flow consisting of TV and EV.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012041
Author(s):  
Jarapala Ramesh Babu ◽  
Manas Ranjan Nayak ◽  
B. Mangu

Abstract Due to the rapid increase of environmental pollution caused by automobiles. To decrease pollution and to save our resources, there is an alternator to use an electric vehicle instead of a gasoline engine. The main drawback of a gasoline engine of compared to the electric vehicle can polluter noise efficiency durability. When it comes to durability, efficiency, and acceleration capabilities of electric vehicles, they are more impressive. The electric vehicles involve HEVs and BEVs. Generally, ultra-capacitor, solar Photovoltaic (PV) system, batters, regenerative braking systems and flywheel are utilized in HEVs as energy storage devices. All energy storage devices are linked to this distinct dc-dc converter scheme for raising input sources’ voltage. In past few decades, most HEVs have incorporated multi-input converters in order to enhance their reliability and efficiency. There are several distinct multi-input dc-dc converter schemas utilized in HEVs. This research discusses their current and future trends as well as energy storage devices.


Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Brahim Mebarki ◽  
Belkacem Draoui ◽  
Boumediène Allaou ◽  
Lakhdar Rahmani ◽  
Elhadj Benachour

The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC) system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.


2020 ◽  
Vol 6 ◽  
pp. 627-632 ◽  
Author(s):  
Yongli Ji ◽  
Qingshan Xu ◽  
Kaining Luan ◽  
Bin Yang

In order to improve the reliability and efficiency of the power grid, the smart grid uses different communication technologies. Smart grid allows bidirectional flow of electricity and information, about the state of the network and the preconditions of the clients, between the different parts of the network. Therefore, it reduces energy losses and generates and distributes electricity efficiently. Although smart grid improves the quality of network services, due to the nature of the power grid communication networks are exposed to cybersecurity threats along with the other threats. For example, electricity consumption messages sent by consumers to the utility through the wireless network can be captured, modified or reproduced by adversaries. As a consequence, the important challenges in smart grid seems to be security and privacy concerns. The smart grid update creates three main communication architectures: the first is communication between the utility companies and customers through diverse networks; that is, Local Area Networks (HAN), Construction Area Networks (BAN) and Neighboring Area Networks (NAN), we refer to these networks as client-side networks in our thesis. The second architecture is the communication through the vehicle-to-network (V2G) connection between the Electric Vehicles and the network to charge or discharge their batteries. The hindmost network is connection of the network with measurement units that extend throughout the network in order to monitor the status and send reports periodically to the main CC to estimate the status and detect erroneous data. The proposed schemes are promising solutions for the security and privacy problems of the three main communication networks in smart grid. The novelty of these proposed schemes is not only because they are robust and efficient security solutions, but also due to their lightweight communication and computing overhead, which qualifies them to be applicable in devices with limited capacity in the network. Therefore, this work is considered an important progress towards a more reliable and authentic intelligent network.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Fathurrahman Fathurrahman

The grid to vehicle context in this report referred to the current status of the vehicle charging system that supported by the grid and its implication to the grid. The electric vehicle also can be exploited and treated as the mobile energy storage that has the capability to inject the power back to the grid. The idea of transfer back power the grid from electric vehicle is commonly known as V2G. In total, the cumulative horse power that millions vehicle have are tens times larger than the total of all electricity generating capacity in the world. However, due to the technical issue, the vehicle potential could not be tap to contribute to the grid until the birth of current concept of so called V2G. V2G is relatively a new technological breakthrough, which not only support the grid but also could potentially accelerate the process of creating a smarter grid.


Electric vehicles are used nowadays to reduce carbon emissions and green house gases. The main challenge in the electric vehicles is the energy storage systems. For battery operated vehicles, the increase in charging time is the major concern and range of the vehicles for a single charge is not satisfied. This leads to restrict the commercialization of electric vehicles. To overcome this, researchers and industry peoples has developed a hybrid vehicle technology which contains both electric and internal combustion engines. The efficiency of the hybrid vehicle is increased when it is incorporated with IC engines. But still the energy storage issues are censorious. Now the potential area in the energy storage systems is flow batteries. The main advantage of the flow batteries is fast charging tendency. Refuelling is possible only in case of flow batteries among all energy storage devices used in electric vehicles. This paper provides the study of flow batteries used in electric vehicles and comparison of different flow batteries for electric vehicle applications


2017 ◽  
pp. 1669-1694
Author(s):  
Jianhui Wong ◽  
Yun Seng Lim

Electrical grid is no longer featured in a conventional way nowadays. Today, the growing of new technologies, primarily the distributed renewable energy sources and electric vehicles, has been integrated with the distribution networks causing several technical issues. As a result, the penetration of the renewable energy sources can be limited by the utility companies. Smart grid has been emerged as one of the solutions to the technical issues, hence allowing the usage of renewable and improving the energy efficiency of the electrical grid. The challenge is to develop an intelligent management system to maintain the balance between the generation and demand. This task can be performed by using energy storage system. As part of the smart grid, the deployment of energy storage system plays a critical role in stabilizing the voltage and frequency of the networks with renewable energy sources and electric vehicles. This book chapter illustrates the revolution and the roles of energy storage for improving the network performance.


Sign in / Sign up

Export Citation Format

Share Document