scholarly journals Role of Erythromycin-Regulated Histone Deacetylase-2 in Benign Tracheal Stenosis

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhenjie Huang ◽  
Peng Wei ◽  
Luoman Gan ◽  
Tonghua Zeng ◽  
Caicheng Qin ◽  
...  

Objective. This study aims to explore the role of erythromycin-regulated histone deacetylase-2 in benign tracheal stenosis. Methods. The rabbit model of tracheal stenosis was established. The rabbits were randomly divided into 8 groups. Histone deacetylase-2 (HDAC2) expression was detected by immunofluorescence. The expression of type I collagen and type III collagen was detected by immunohistochemical method. The expression of TGF-β1, VEGF and IL-8 in serum and alveolar lavage fluid was detected by ELISA. The expression of HDAC2, TGF-β1, VEGF and IL-8 in bronchi of each group was detected by Western blotting method. Results. In Erythromycin (ERY) group, ERY + Budesonide group, ERY + Vorinostat group and ERY + Budesonide + Vorinostat group, the degree of bronchial stenosis was alleviated, and the mucosal epithelium was still slightly proliferated. The effect of ERY combined with other drugs was more obvious. The HDAC2 protein expression increased significantly in ERY group, ERY + Budesonide group and ERY + Budesonide + Vorinostat group and decreased significantly in Vorinostat group, the expression of collagen I and III decreased significantly in ERY group, ERY + Budesonide group and ERY + Budesonide + Vorinostat group (P<0.05). The TGF-β1, IL-8 and VEGF levels decreased significantly in ERY group, ERY + Budesonide group, ERY + Vorinostat group and ERY + Budesonide + Vorinostat group (P<0.05). Conclusions. Erythromycin inhibited inflammation and excessive proliferation of granulation tissue after tracheobronchial mucosal injury by up-regulating the expression of HDAC2, it promoted wound healing and alleviated tracheobronchial stenosis. When combined with budesonide, penicillin and other glucocorticoids and antibiotics, it had a good synergistic effect. However, vorinostat could attenuate erythromycin’s effect by down-regulating the expression of HDAC2. It may have good clinical application prospects in the treatment of tracheal stenosis.

2020 ◽  
pp. 019459982097825
Author(s):  
Kastley Marvin ◽  
Isaac Schwartz ◽  
Edward Utz ◽  
Justin Wilson ◽  
Christopher Johnson ◽  
...  

Objective The objective of this study was to investigate the effects of fractional CO2 laser on subglottic scar. Study Design Randomized controlled animal study. Setting Academic medical center. Methods Subglottic scar was induced in 12 New Zealand white rabbits via an endoscopic brush technique. This was followed by an open airway surgery that included vertical division of the cricoid and proximal trachea. Eight rabbits underwent fractional CO2 laser treatment of the scar via a Lumenis Ultrapulse Deep FX handpiece. Four rabbits underwent the open surgical approach without laser treatment. Bronchoscopy was performed at weeks 1, 2, 4, and 8. The animals were euthanized and laryngotracheal complexes harvested 12 weeks postsurgery. Immunohistochemistry was performed to determine the collagen composition of treated and untreated scars. Results All 12 subjects survived to the study endpoint with no significant respiratory complications, despite 10 of 12 developing some degree of lateral tracheal narrowing. The median ratio of type I collagen to type III collagen in the laser group (1.57) was significantly more favorable than that of the untreated group (2.84; P = .03). Conclusion Treatment with fractional CO2 laser appears to have similar effects on subglottic scars as with cutaneous scars, improving the ratio of type I to type III collagen. Additionally, we developed an open airway approach in the rabbit model to deliver fractional CO2 laser treatment to the subglottis without introducing respiratory complications or compromising survival.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


2021 ◽  
Vol 41 ◽  
pp. 100959
Author(s):  
Long-Jie Yan ◽  
Le-Chang Sun ◽  
Kai-Yuan Cao ◽  
Yu-Lei Chen ◽  
Ling-Jing Zhang ◽  
...  

Biopolymers ◽  
1979 ◽  
Vol 18 (12) ◽  
pp. 3005-3014 ◽  
Author(s):  
Donald L. Helseth ◽  
Joseph H. Lechner ◽  
Arthur Veis

2010 ◽  
Vol 5 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Christian Leli ◽  
Leonella Pasqualini ◽  
Gaetano Vaudo ◽  
Stefano Gaggioli ◽  
Anna Maria Scarponi ◽  
...  

1987 ◽  
Vol 87 (2) ◽  
pp. 357-362
Author(s):  
J. Gavrilovic ◽  
R.M. Hembry ◽  
J.J. Reynolds ◽  
G. Murphy

A specific antiserum to purified rabbit tissue inhibitor of metalloproteinases (TIMP) was raised in sheep, characterized and used to investigate the role of TIMP in a model system. Chondrocytes and endothelial cells cultured on 14C-labelled type I collagen films and stimulated to produce collagenase were unable to degrade the films unless the anti-TIMP antibody was added. The degradation induced was inhibited by a specific anti-rabbit collagenase antibody. It was concluded that TIMP is a major regulatory factor in cell-mediated collagen degradation.


1984 ◽  
Vol 62 (6) ◽  
pp. 462-469 ◽  
Author(s):  
Hardy Limeback ◽  
Kichibee Otsuka ◽  
Kam-Ling Yao ◽  
Jane E. Aubin ◽  
Jaro Sodek

A number of bone cell clones isolated from rat calvaria have been maintained in culture for more than 3 years. Several of these clones have undergone dramatic changes in phenotype. One of these clones, RGB 2.2, was observed originally to have a fibroblastic morphology in culture and to respond to parathyroid hormone (PTH), but not prostaglandin E2 (PGE2), with an increase in intracellular cAMP. Throughout several passages in early subcultures, these cells synthesized mostly type I collagen, with small amounts of type III and type V collagens. Whereas PTH had no detectable effect on collagen synthesis, PGE2 decreased the amount of total cell layer collagen, with the greatest effect on type III collagen, while increasing the proportion of type V collagen. Subsequent studies on these cells during 3 years in culture have indicated changes in their phenotype including a progressive change in morphology to a more cuboidal shape and a change in collagen synthesis, the cells producing large amounts of the "embryonic" collagen, α1(I) trimer. The reason(s) for the change in collagen expression is unknown, but may be the result of a change in which gene(s) is being expressed.


Author(s):  
Lucas Félix ROSSI ◽  
Manoel Roberto Maciel TRINDADE ◽  
Armando José D`ACAMPORA ◽  
Luise MEURER

ABSTRACT Background: Hernia correction is a routinely performed treatment in surgical practice. The improvement of the operative technique and available materials certainly has been a great benefit to the quality of surgical results. The insertion of prostheses for hernia correction is well-founded in the literature, and has become the standard of treatment when this type of disease is discussed. Aim: To evaluate two available prostheses: the polypropylene and polypropylene coated ones in an experimental model. Methods: Seven prostheses of each kind were inserted into Wistar rats (Ratus norvegicus albinus) in the anterior abdominal wall of the animal in direct contact with the viscera. After 90 days follow-up were analyzed the intra-abdominal adhesions, and also performed immunohistochemical evaluation and videomorphometry of the total, type I and type III collagen. Histological analysis was also performed with hematoxylin-eosin to evaluate cell types present in each mesh. Results: At 90 days the adhesions were not different among the groups (p=0.335). Total collagen likewise was not statistically different (p=0.810). Statistically there was more type III collagen in the coated polypropylene group (p=0.039) while type I was not different among the prostheses (p=0.050). The lymphocytes were statistically more present in the polypropylene group (p=0.041). Conclusion: The coated prosthesis was not different from the polypropylene one regarding the adhesion. Total and type I collagen were not different among the groups, while type III collagen was more present on the coated mesh. There was a greater number of lymphocytes on the polypropylene mesh.


2005 ◽  
Vol 94 (07) ◽  
pp. 107-114 ◽  
Author(s):  
Christelle Lecut ◽  
Martine Jandrot-Perrus ◽  
Marion A. H. Feijge ◽  
Judith M. E. M. Cosemans ◽  
Johan W. M. Heemskerk

SummaryThe role of collagens and collagen receptors was investigated in stimulating platelet-dependent thrombin generation. Fibrillar type-I collagens, including collagen from human heart, were most potent in enhancing thrombin generation, in a way dependent on exposure of phosphatidylserine (PS) at the platelet surface. Soluble, non-fibrillar type-I collagen required pre-activation of integrin α2β1 with Mn2+ for enhancement of thrombin generation. With all preparations, blocking of glycoprotein VI (GPVI) with 9O12 antibody abrogated the collagen-enhanced thrombin generation, regardless of the α2β1 activation state. Blockade of α2β1 alone or antagonism of autocrine thromboxane A2 and ADP were less effective. Blockade of αIIbβ3 with abciximab suppressed thrombin generation in platelet-rich plasma, but this did not abolish the enhancing effect of collagens. The high activity of type-I fibrillar collagens in stimulating GPVI-dependent procoagulant activity was confirmed in whole-blood flow studies, showing that these collagens induced relatively high expression of PS. Together, these results indicate that: i) fibrillar type-I collagen greatly enhances thrombin generation, ii) GPVI-induced platelet activation is principally responsible for the procoagulant activity of fibrillar and non-fibrillar collagens, iii) α2β1 and signaling via autocrine mediators facilitate and amplify this GPVI activity, and iv) αIIbβ3 is not directly involved in the collagen effect.


Sign in / Sign up

Export Citation Format

Share Document