scholarly journals Dynamic Changes in Surface Damage Induced by High-Intensity Mining of Shallow, Thick Coal Seams in Gully Areas

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jianwei Li ◽  
Xintian Li ◽  
Changyou Liu ◽  
Xiangye Wu

This study proposes a novel approach to study the mechanism of mining and dynamic changes in surface subsidence and geological hazard-prone regions caused by shallow, thick coal seam mining in gully areas. This approach combines field observation, three-dimensional modeling, numerical simulation, and theoretical analysis based on the conditions of the Chuancao Gedan coal mine. The in situ stress field of coalbeds is influenced by the gully terrain. Shear stress becomes concentrated on the surface, causing geological disasters such as landslides and collapse of gully slopes. High-intensity mining activities increase the concentration and are more likely to cause such geological disasters. The influence area and severity vary dynamically with the expansion of the excavation area. With the continuous expansion of coal seam mining, the amplification ratio η (the ratio of the maximum impact range of surface subsidence and the mined-out area) first increased to 3.35, then decreased, and finally reached a constant value of 2.1. The principle of road line selection is proposed based on an analysis of surface subsidence and gully slope stability on the goaf edge. The principle of subsection reinforcement of the gully slope under the dynamic influence of coal seam mining is also determined.

2013 ◽  
Vol 718-720 ◽  
pp. 1934-1937
Author(s):  
Meng Lin Xu ◽  
De Shen Zhao

In order to delve better what research methodology of height of water conducted fissure zone are, especially in mining of thick coal seam with soft, 3-D numerical simulationin was used to S2S9 face of Da Ping mine, it reveals the damage movement rule of overlying strata in mining roof-coal in "Three Soft" coal seam in the end . Thus it confirms the height of the water flowing fractured zone and tests the simulation result by the theoretical analysis and simple hydrology observation result. it provides a new idea for the application soft overburden in extra- thick seam mining technology.


2011 ◽  
Vol 250-253 ◽  
pp. 2135-2140
Author(s):  
Zhi Ping Wu ◽  
Sheng Hua Qiu ◽  
Ying Li

According to the complex mining geological condition of Shandong gentle inclined multi-seam mining, Use the three-dimensional finite element numerical analysis software to establish three-dimensional geological model under the different mining working conditions. Taking into account the impact of faults to calculate multi-seam roof strata movement and surface subsidence caused by the different mining working conditions. The level displacement & subsidence distribution curve of the reference point of surface & multi-seam roof strata under the different working conditions is shown. The maximum, minimum settlement, differential settlement and subsidence diagram is shown. And the principal stress, shear stress value of surface & multi-seam roof strata after mining also is shown. The results showed that: little change of the biggest surface subsidence and differential settlement is caused by mining 3101&3102 face or separate 3101 or 3102 face. And the largest subsidence, and the settlement difference of the surface is 520mm, 498mm, 515mm and 59mm, 78mm, 81mm, Respectively. It provides an reference for reasonable, safe, economic for the inclined multi-seam mining under similar conditions.


2014 ◽  
Vol 962-965 ◽  
pp. 242-246
Author(s):  
Wen Yu Lv ◽  
Zhi Hui Zhang

Because of thick coal seam mining method selection is not only affected by coal seam geological conditions, but also limited by workers, and not fully utilization of experts` experience, the effect of tradition coal mining method selection methods are not ideal. The thick coal seam mining method prediction model based on artificial neural network (TCSMMPM-ANN) was established through the analysis of thick coal seam mining by using Levenberg – Marquardt (L-M) improved algorithm to train network, the simulation results of network test show that this model can provide a new research idea for thick coal seam mining method optimal selection and face economic and technical index prediction, it will have a broad prospect in thick coal mining.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Weiping Shi ◽  
Xiaocheng Qu ◽  
Chuntao Jiang ◽  
Kaixin Li

In the process of coal mining, the surface subsidence under ultrathick loose layer is abnormal (subsidence coefficient greater than 1.0), which will cause great damage to the surface ecological environment. The fracture propagation and stress evolution of bedrock are of great significance to the prevention of surface subsidence. Taking the 1305 working face of a mine as the background, this paper study the process of crack propagation and stress evolution of bedrock under the influence of ultrathick loose layer by methods of on-site measurement, similar simulation, and numerical simulation. During the research process, the physical model was verified by the measured data. Then, the numerical model was verified by the crack propagation angle and subsidence of bedrock, which were obtained in a similar simulation. Based on the verified numerical model, it was obtained that after the coal seam was mined out, the bedrock above the mined-out area was mainly damaged by tension, while the strata on both sides of the crack expansion angle were mainly damaged by shear and tension. During coal seam mining, for bedrock the process of fracture expansion, subsidence, and stress evolution all could be divided into four stages. This research provides a basis for the control of surface subsidence.


Sign in / Sign up

Export Citation Format

Share Document