scholarly journals Study on Numerical Simulation Test of Mining Surface Subsidence Law under Ultrathick Loose Layer

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Weiping Shi ◽  
Xiaocheng Qu ◽  
Chuntao Jiang ◽  
Kaixin Li

In the process of coal mining, the surface subsidence under ultrathick loose layer is abnormal (subsidence coefficient greater than 1.0), which will cause great damage to the surface ecological environment. The fracture propagation and stress evolution of bedrock are of great significance to the prevention of surface subsidence. Taking the 1305 working face of a mine as the background, this paper study the process of crack propagation and stress evolution of bedrock under the influence of ultrathick loose layer by methods of on-site measurement, similar simulation, and numerical simulation. During the research process, the physical model was verified by the measured data. Then, the numerical model was verified by the crack propagation angle and subsidence of bedrock, which were obtained in a similar simulation. Based on the verified numerical model, it was obtained that after the coal seam was mined out, the bedrock above the mined-out area was mainly damaged by tension, while the strata on both sides of the crack expansion angle were mainly damaged by shear and tension. During coal seam mining, for bedrock the process of fracture expansion, subsidence, and stress evolution all could be divided into four stages. This research provides a basis for the control of surface subsidence.

2011 ◽  
Vol 105-107 ◽  
pp. 1295-1298
Author(s):  
Zhi Gang Yan

Coal mining can cause the strata distortion and surface subsidence. With infrastructure construction scale in our country enlargement, the case of approaching excavation caused by coal mining is increasing and more complicated. The calculation method of current regulations is too simple and don't conform to the present coal mining technology, so it will cause serious waste of resources. By using numerical simulation, this paper regards the influence of coal mining on the above tunnel as approaching excavation problem and studies the tunnel deformation law with three different coal mining mode. Based on the analysis and calculation, this paper proposes measures to ensure that the coal seam mining and tunnel's safety. The result indicates the more smaller the dip angle of coal block the more larger the displacement and the deformation range of tunnel. The most effective method for decrease deformation is the backfill method. If the conditions are permitted, backfill method is the preferred method and longwall caving method is last.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Shengrong Xie ◽  
Xiaoyu Wu ◽  
Dongdong Chen ◽  
Yaohui Sun ◽  
En Wang ◽  
...  

The surrounding rock of the roadway under double gobs in the lower coal seams is partially damaged by the mining of the upper coal seam and the stress superimposition of the stepped coal pillars. What is worse, the upper layer of the roof is collapse gangue in double gobs, which makes the anchor cable unable to anchor the reliable bearing layer, so the anchoring performance is weakened. The actual drawing forces of the anchor bolt and anchor cable are only approximately 50 kN and 80 kN, respectively. The roadway develops cracks and large deformations with increasing difficulty in achieving safe ventilation. In view of the above problems, taking the close coal seam mining in the Zhengwen Coal Mine as the engineering background, a theoretical calculation is used to obtain the loading of the step coal pillars and the slip line field distribution of the floor depth. The numerical simulation monitors the stress superimposition of stepped coal pillars and the distribution of elastoplastic areas to effectively evaluate the layout of mining roadways. The numerical simulation also analyzes the effective prestress field distribution of the broken roof and grouting roof anchor cable. A laboratory test was used to monitor the strength of the grouting test block of the broken coal body. Then, we proposed that grouting anchor cable be used to strengthen the weak surface of the roof and block the roof cracks. From on-site measurement, the roadway was seen to be arranged in the lateral stress stabilization area of the stepped coal pillars, the combined support technology of the grouting anchor cable (bolt) + U type steel + a single prop was adopted, the roadway deformation was small, the gas influx was reduced, and the drawing force of the anchor bolt and the anchor cable was increased to approximately 160 kN and 350 kN, respectively. The overall design and control technology of the roadway can meet the site safety and efficient production requirements.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2088-2091 ◽  
Author(s):  
Zhen Li Fan

For fault displacement on the influence of the water flowing fractured zone, using the methods of numerical simulation analysis, the research simulated the coal seam mining of mid-hard superincumbent stratum. Through the simulations of the influence to water flowing fractured zone of different fault displacements, the study concluded that: with the increase of fault throw, the increase of the height of water flowing fractured zone is not big, in general, the increase value is bigger 2.44 ~ 7.32% than no fault existence in the coal seam mining.


Sign in / Sign up

Export Citation Format

Share Document