scholarly journals Coiflet Wavelet-Homotopy Solution of Channel Flow due to Orthogonally Moving Porous Walls Governed by the Navier–Stokes Equations

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qing-Bo Chen ◽  
Hang Xu

A newly computational method based on the Coiflet wavelet and homotopy analysis method is developed, which inherits the great nonlinear treatment of the homotopy analysis technique and the local high-precision capability of the wavelet approach, to give solutions to the classic problem of channel flow with moving walls. The basic principle of this suggested technique and the specific solving process are presented in detail. Its validity and efficiency are then checked via rigid comparisons with other computational approaches. It is found that the homotopy-based convergence-control parameter and the wavelet-based resolution level of Coiflet are two effective ways to improve on accuracies of solutions.

1971 ◽  
Vol 47 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Jon Lee

The truncated Burgers models have a unique equilibrium state which is defined continuously for all the Reynolds numbers and attainable from a realizable class of initial disturbances. Hence, they represent a sequence of convergent approximations to the original (untruncated) Burgers problem. We have pointed out that consideration of certain degenerate equilibrium states can lead to the successive turbulence-turbulence transitions and finite-jump transitions that were suggested by Case & Chiu. As a prototype of the Navier–Stokes equations, Burgers model can simulate the initial-value type of numerical integration of the Fourier amplitude equations for a turbulent channel flow. Thus, the Burgers model dynamics display certain idiosyncrasies of the actual channel flow problem described by a truncated set of Fourier amplitude equations, which includes only a modest number of modes due to the limited capability of the computer at hand.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yong Liu ◽  
Jia Li ◽  
Yu Tian ◽  
Xia Yu ◽  
Jian Liu ◽  
...  

The application of two-phase computational fluid dynamics (CFD) for simulating crater-like Taylor cone formation dynamics in a viscous liquid is a challenging task. An interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations based on Navier-Stokes equations were employed to simulate the crater-like Taylor cone formation process. The computational results of the dynamics of crater-like Taylor cone slowly formed on a free liquid surface produced by a submerged nozzle in a viscous liquid were presented in this paper. Some experiments with different air pressures were carried out to evaluate the simulation results. The results from both CFD and experimental observations were compared and analyzed. The numerical results were consistent with the experimental results. Our study showed that the CLSVOF method gave convincing results, and the computational method is robust to extreme variations in interfacial topology.


2022 ◽  
Vol 2159 (1) ◽  
pp. 012007
Author(s):  
N Balaguera Medina ◽  
M A Atuesta ◽  
O A Nieto ◽  
P A Ospina Henao

Abstract The fixed-wall rectangular cavity flow problem is a classic problem that has been studied since the beginning of computational fluid mechanics. The present work aims to provide a numerical and computational solution of the Navier-Stokes equations using the finite difference method, applied to model the problem of a magnetorheological fluid in a rectangular cavity with a fixed wall in shock absorbers devices, used in civil structures that use energy dissipators.


2010 ◽  
Vol 65 (11) ◽  
pp. 961-968 ◽  
Author(s):  
Tasawar Hayat ◽  
Muhammad Nawaz

This investigation describes the effects of heat transfer on magnetohydrodynamic (MHD) axisymmetric flow of a viscous fluid between two radially stretching sheets. Navier-Stokes equations are transformed into the ordinary differential equations by utilizing similarity variables. Solution computations are presented by using the homotopy analysis method. The convergence of obtained solutions is checked. Skin friction coefficient and Nusselt number are given in tabular form. The dimensionless velocities and temperature are also analyzed for the pertinent parameters entering into the problem.


Author(s):  
P P Chinchapatnam ◽  
K Djidjeli ◽  
P B Nair ◽  
M Tan

Meshless methods for solving fluid and fluid-structure problems have become a promising alternative to the finite volume and finite element methods. In this paper, a mesh-free computational method based on radial basis functions in a finite difference mode (RBF-FD) has been developed for the incompressible Navier—Stokes (NS) equations in stream function vorticity form. This compact RBF-FD formulation generates sparse coefficient matrices, and hence advancing solutions will in time be of comparatively lower cost. The spatial discretization of the incompressible NS equations is done using the RBF-FD method and the temporal discretization is achieved by explicit Euler time-stepping and the Crank—Nicholson method. A novel ghost node strategy is used to incorporate the no-slip boundary conditions. The performance of the RBF-FD scheme with the ghost node strategy is validated against a variety of benchmark problems, including a model fluid—structure interaction problem, and is found to be in a good agreement with the existing results. In addition, a higher-order RBF-FD scheme (which uses ideas from Hermite interpolation) is then proposed for solving the NS equations.


Author(s):  
A Kimiaeifar ◽  
G H Bagheri ◽  
M Rahimpour ◽  
M A Mehrabian

In this article, stagnation flow in the vicinity of a shrinking sheet is studied. A similarity transformation is employed to reduce the Navier—Stokes equations to a set of non-linear ordinary differential equations. These equations are then solved analytically by means of the homotopy analysis method (HAM). The results obtained were shown to compare well with the numerical results available in the literature for the same problem. Close agreement between the two sets of results indicates the accuracy of the HAM. The method can predict the flow field in all vertical distances from the sheet, and is also able to control the convergence of the solution. The numerical solution of the similarity equations is also developed and the results are in good agreement with the analytical results based on the HAM.


Author(s):  
Munehiko Hinatsu ◽  
Takanori Hino

This paper presents the effect of surging motion on viscous flows around a Wigley ship running in incident waves through CFD simulation. The computational method used is based on the Navier-Stokes equations in unstructured grid system with pseudo-compressibility assumption. Since a ship changes its attitude when it runs in incident waves, we have to modify the code to be able to treat the ship motion by use of a moving grid technique. In order to simulate surging motion, the ship is connected with a spring to keep its mean position. We show the influence of surging motion on wake and ship resistance using springs of different strengths. Numerical results and discussions are shown.


2019 ◽  
Vol 8 (1) ◽  
pp. 695-701 ◽  
Author(s):  
Amit Prakash ◽  
Doddabhadrappla Gowda Prakasha ◽  
Pundikala Veeresha

Abstract In this paper, numerical solution of fractional order Navier-Stokes equations in unsteady viscous fluid flow is found using q-homotopy analysis transform scheme. Fractional derivative is considered in Caputo sense. The proposed technique is a blend of q-homotopy analysis scheme and transform of Laplace. It executes well in efficiency and provides h-curves that show convergence range of series solution.


Sign in / Sign up

Export Citation Format

Share Document