scholarly journals miRNA-187-5p Regulates Osteoblastic Differentiation of Bone Marrow Mesenchymal Stem Cells in Mice by Targeting ICAM1

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yi Sun ◽  
Xin Wang ◽  
Guanghua Chen ◽  
Chengchao Song ◽  
Xinnan Ma ◽  
...  

Osteoporosis (OP) is a common bone metabolic disease, the process of which is fundamentally irreversible. Therefore, the investigation into osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) will provide more clues for OP treatment. In the present study, we found that microRNA-187-5p (miR-187-5p) played a key role on osteoblastic differentiation, which was significantly upregulated during osteogenic differentiation of BMSCs in mice. Moreover, overexpression of miR-187-5p suppressed osteoblastic differentiation of BMSCs through increasing alkaline phosphatase (ALP), matrix mineralization, and levels of Osterix (OSX), and osteopontin (OPN) as well as runt-related transcription factor 2 (Runx2) in vitro. The results in vivo indicated that the upregulation of miR-187-5p enhanced the efficacy of new bone formation in the heterotopic bone formation assay. Luciferase reporter assay and western blot analysis revealed that miR-187-5p was involved in osteogenesis by targeting intracellular adhesion molecule 1 (ICAM-1). Furthermore, ICAM-1 silence inhibited osteoblastic differentiation of BMSCs. Taken together, our results suggested for the first time that miR-187-5p may promote osteogenesis by targeting ICAM-1, and provided a possible therapeutic target for bone metabolic diseases.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4254-4254
Author(s):  
He Huang ◽  
Jing Zheng ◽  
Xiaoyu Lai ◽  
Junli Cao ◽  
Jianling Fan

Abstract Objective: Bone marrow mesenchymal stem cells (MSCs) are widely studied in recent years. As an important part of cell identification, specific surface markers of MSCs have been paid a lot of attention to for long, but no breakthrough as yet. Monoclonal antibodies (McAb) against surface of certain cells have been used to characterize cell lineages. ZUC3, a novel murine McAb was produced by hybridoma technology previously, which was specifically reactive with both human MSCs and rat MSCs. Studying the expression of ZUC3 antigen on rat MSCs after passage and differentiation, it was to define whether ZUC3 antigen would be available for the identification of rat MSCs or their differentiation lineages. Methods: Rat MSCs isolated by a single step of adhesion to cell culture plastic, and purified via replacement of medium and a serial of passage, then the cells were identified by surface molecules CD90, CD44 and CD45 by flow cytometry. Enzyme immunocytochemistry and indirect immunofluorescence were used to evaluate the availability of ZUC3 expression by rat MSCs as a surface marker. Then further exploratory researches were carried out concerning ZUC3 expression by rat MSCs during passages (P1 to P5) and multiple differentiation (neuron, osteoblasts and adipocytes) in the certain condition. Results: Homogeneous rat MSCs could be obtained in vitro, which were uniformly positive for adhesion molecules CD90, CD44, and negative for CD45. The McAb was specifically reactive with rat MSCs as the positive cells were more than 99% by immunohistochemistry and immunofluorescence staining, and ZUC3 antigen located on the membrane of rat MSCs. The flow cytometric analysis show ZUC3 antigen expression by rat MSCs from P1 to P5 were all more than 85%. Analysis by multiple comparison, it was found some differences between P2 and P1 (93.95±2.44% v.s. 86.90±1.80%, P<0.01). The maximal expression was reached at P3 (97.10±1.25%), and the flow cytometric analysis showed a single symmetrical peak. Data of P4 (94.50±2.23%) population were slightly lower than P3 (P>0.05). By contrast, P5 (88.35±2.99%) showed a significant decline comparing with the former passages (P<0.01). Furthermore, rat MSCs could be successfully induced to differentiate into neuron-like cells, osteoblasts, and adipocytes and there was to some extent a downward trend of ZUC3 expression after differentiation (P<0.01). More than 90% rat MSCs could transform to an neuron-like appearance which were positive for NeuN, NF-M after treated with alpha-thioglycerol, and there was some downward degree of ZUC3 expression (97.77±1.03% to 80.07±2.70%, P<0.01). During the osteoblastic differentiation, it was observed an obvious down-regulation of ZUC3 expression from the 10th day (96.63±1.03% to 90.07±2.40%, P<0.01 ) and percentage on the 10th (90.07±2.40%), 15th (84.43±2.80%), 20th (64.53±7.63%) and 25th (53.40±10.02%) day were significantly lower than their anterior time respectively (P<0.05). The results of adipogenic differentiation after MSCs incubated with proper medium were similar to what observed during osteoblastic differentiation and ZUC3 expression were down-regulation on the 7th (84.33±2.70%), 14th (75.90±2.00%) and 21st (70.57±0.47%) day compared with their anterior dots respectively (P<0.01). Conclusion: ZUC3 antigen could be used for identification of rat MSCs. Significant decline of ZUC3 expression had be observed after rat MSCs were induced to differentiate along neuronal, osteoblastic and adipogenic pathways, which indicated that ZUC3 antigen would be a marker of progenitor.


2016 ◽  
Vol 99 (5) ◽  
pp. 500-509 ◽  
Author(s):  
Qiong Lu ◽  
Man-Li Tu ◽  
Chang-Jun Li ◽  
Li Zhang ◽  
Tie-Jian Jiang ◽  
...  

2020 ◽  
Author(s):  
Yuli Wang ◽  
Fengyi Lv ◽  
Lintong Huang ◽  
Hengwei Zhang ◽  
Bing Li ◽  
...  

Abstract Background and aim: Periodontitis is a chronic inflammatory disease inducing the absorption of alveolar bone and leading to tooth loss. Human amnion–derived mesenchymal stem cells (HAMSCs) have been used for studying inflammatory processes. This study aimed to explore the role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (ANRIL) in HAMSC-driven osteogenesis in lipopolysaccharide (LPS)-induced human bone marrow mesenchymal stem cells (HBMSCs).Methods: The cells were incubated with a co-culture system. Reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity were used to detect the oxidative stress level. Flow cytometry was performed to determine cell proliferation. The alkaline phosphatase (ALP) activity, Alizarin red assay, cell transfection, and rat mandibular defect model were used to evaluate the osteogenic differentiation. Quantitative real-time reverse transcription–polymerase chain reaction (RT-PCR), Western blot analysis, dual-luciferase reporter assay, and immunofluorescence staining were used to evaluate the molecular mechanisms.Results: This study showed that HAMSCs promoted the osteogenesis of LPS-induced HBMSCs, while the ANRIL level in HBMSCs decreased during co-culture. ANRIL had no significant influence on the proliferation of LPS-induced HBMSCs. However, its overexpression inhibited the HAMSC-driven osteogenesis in vivo and in vitro, whereas its knockdown reversed these effects. Mechanistically, this study found that downregulating ANRIL led to the overexpression of microRNA-125a (miR-125a), and further contributed to the competitive binding of miR-125a and adenomatous polyposis coli (APC), thus significantly activating the Wnt/β-catenin pathway.Conclusion: The study indicated that HAMSCs promoted the osteogenic differentiation of LPS-induced HBMSCs via the ANRIL/miR-125a/APC axis, and offered a novel approach for periodontitis therapy.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Bin Zhao ◽  
Gengyan Xing ◽  
Aiyuan Wang

Abstract Background This study was conducted with the aim of exploring the effect of the BMP signaling pathway on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (rBMSCs) in rats with osteoporosis (OP). Methods The bilateral ovaries of female SD rats were resected for the establishment of a rat OP model. The osteoblastic differentiation of isolated rBMSCs was identified through osteogenic induction. Adipogenetic induction and flow cytometry (FCM) were used to detect adipogenic differentiation and the expression of rBMSC surface markers. The rBMSCs were grouped into the blank group, NC group, si-BMP2 group, and oe-BMP2 group. The expression levels of key factors and osteogenesis-related factors were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). The formation of calcified nodules was observed by alizarin red staining. ALP activity was measured by alkaline phosphatase staining. Results The rats with OP had greater weight but decreased bone mineral density (BMD) than normal rats (all P < 0.01). The rBMSCs from rats with OP were capable of osteoblastic differentiation and adipogenic differentiation and showed high expression of CD44 (91.3 ± 2.9%) and CD105 (94.8 ± 2.1%). Compared with the blank group, the oe-BMP2 group had elevated BMP-2 and Smad1 levels and an increase in calcified nodules and ALP-positive staining areas (all P < 0.05). Moreover, the expression levels of Runx2, OC, and OPN in the oe-BMP2 group were relatively higher than those in the blank group (all P < 0.05). The findings in the si-BMP2 group were opposite to those in the oe-BMP2 group. Conclusion BMP signaling pathways activated by BMP-2 can promote the osteoblastic differentiation of rBMSCs from rats with OP.


2021 ◽  
Vol 11 (12) ◽  
pp. 2346-2356
Author(s):  
Jie Zhong ◽  
Juncheng Tang ◽  
Kun Huang

We aimed to explore underlying mechanism by which microRNA-21 (miR-21) derived from bone marrow mesenchymal stem cells (BMSCs) extracted exosomes (exo) in pancreatic cancer (PC). Bioinformatics analysis identified candidate miRNAs and target mRNAs in PC those were verified by luciferase reporter assay. BMSCs and exo were isolated and co-cultivated with PC cells. PC cells were then treated with plasmids loaded with miR-21 or a disintegrin and metalloprotease 9 (ADAM9), followed by detection of invasion, metastasis and apoptosis through Transwell assay and flow cytometry. MiR-21 was downregulated in PC tissues and cells, while ADAM9 was upregulated and positively correlated with poor prognosis. Overexpression of miR-21 restrained the capacities of proliferation, invasion and migration of PC cells by inhibiting ADAM9 expression. Specific inhibitor GW4869 reduced release of exo and declined miR-21 expression. Treatment with BMSC-exo containing miR-21 suppressed the malignant characteristics of cancer cells. MiR-21 derived from exo of BMSCs inhibited PC progression by ADAM9 down-regulation, providing insight into novel strategy against PC.


2021 ◽  
Vol 11 (9) ◽  
pp. 1818-1824
Author(s):  
Jiangbo Xiong ◽  
Sheng Liu ◽  
Bin Xiang ◽  
Weibo Zhang ◽  
Jun Du ◽  
...  

This study aims to dissect the effects of bone marrow mesenchymal stem cells (BMSC) on the in vitro activity of glioma cells and the underlying mechanisms. The glioma cells were transfected with miR-133 mimics, RACK1-Vector, negative control (NC) and miR-133 mimic+RACK1-Vector, respectively, and then co-cultured with BMSC followed by analysis of miR-133 expression via PCR, apoptosis via flow cytometry, proliferation via CCK-8, invasion and migration via Transwell assay, the expression of proteins involved in apoptosis, anti-apoptosis, invasiveness and RACK1 by western blot, and the targeting relationship between miR-133 and RACK1 by dual-luciferase reporter gene assay. In comparison with normal glial cells, glioma cells exhibited a significantly diminished miR-133 level. miR-133 was upregulated in glioma cells after co-culture with BMSC, along with significantly restrained proliferation rate, migration and invasion activities as well as reduced protein levels (MMP-2, Vimentin, N-cadherin and MMP-9). Mechanistic study showed that miR-133 can retard the expression of RACK1, thereby impeding the invasion, migration and proliferation activities of cells while triggering cell apoptosis. In conclusion, BMSC-originated miR-133 can impede the migration and invasion while enhancing the apoptosis of glioma cells via targeting RACK1.


2021 ◽  
Vol 11 (12) ◽  
pp. 2502-2506
Author(s):  
Qiumei Liu ◽  
Yanyan Wu ◽  
Jian Ye

This study investigates miR-506 targeting the autophagy and apoptosis-related gene Beclin1 and analyzes the mechanism of its effect on bone marrow mesenchymal stem cells (BMSCs) differentiation and metastasis to breast cancer. Detection of miRNA-506 expression in BMSCs and breast cancer cells was done by Real-time PCR. A luciferase reporter system analyzed the targeting relationship between Beclin1 and miR-506. miR-NC group, BMSCs induction group, siRNA-NC group, and siRNA-Beclin1 group was set to measure Beclin1 expression, cell differentiation and migration by transwell assay, cell viability by MTT assay, proliferation by EdU staining and apoptosis and cycle by flow cell assay. miRNA-506 showed a high expression in breast cancer cells and low expression in BMSCs. miRNA-506 mimics significantly promote breast cancer cell proliferation which was inhibited by miRNA-506 inhibitors. The expression of Beclin1mRNA was significantly higher and miR-506 was lower in breast cancer cells. BMSCs induction significantly downregulated Beclin1 expression, increased miR-506 expression, and promoted cell invasive differentiation and metastatic capacity. In conclusion, elevated miR-506 expression was associated with decreased Beclin1 expression and increased metastatic differentiation capacity of breast cancer cells, which could effectively increase differentiation capacity and metastatic differentiation after induction by BMSCs.


Sign in / Sign up

Export Citation Format

Share Document