scholarly journals Pattern of Plant Community Distribution along the Elevational Gradient and Anthropogenic Disturbance in Gole Forest, Ethiopia

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mesfin Belete Hailemariam ◽  
Tamru Demsis Temam

Vegetation-environment relationships are usually studied along elevational gradient. The patterns of plant community distribution in Gole forest, Ethiopia, were studied along elevational gradient and disturbances. Disturbances were recorded following the elevational gradient. For vegetation data collection, 62 sample plots of size 20 × 20 m were established along an elevational gradient (2728–3480 m.a.s.l). Data on species composition and environmental variables were measured and recorded in each plot. The elevation of each sample plot was measured using Garmin GPS. Anthropogenic disturbances in each plot were estimated using the following scales: 0 = no disturbance, 1 = slightly disturbed, 2 = moderately disturbed, and 3 = highly disturbed. R statistical package was used for cluster and ordination analysis. Boxplots and analysis of variance were used to assess the relationships between plant communities and environmental variables. Sorensen’s similarity coefficient was used to detect similarities and dissimilarities among communities. A total of 114 plant species belonging to 57 families and 94 genera were identified. Five plant community types were identified using agglomerative hierarchical cluster analysis. Every plant community had differences in composition and environmental variables. The variation in plant community distributions was significantly related to elevation and disturbance. Plant community distribution was negatively correlated with elevation ( P < 0.05 ) and also with disturbance ( P < 0.05 ). Sorensen’s similarity index showed that there was a difference in the distribution of plant species composition among the communities. The difference in plant community distribution of Gole forest was significantly related to elevation. Disturbances also have a considerable influence on the plant communities and mitigation of disturbance should be the main measure that needs to be taken into account in conservation planning in the study area.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247966
Author(s):  
Liyew Birhanu ◽  
Tamrat Bekele ◽  
Binyam Tesfaw ◽  
Sebsebe Demissew

Plant community types are influenced by topographic factors, the physical and chemical properties of soil. Therefore, the study was carried out to investigate the relationships of soil and topographic factors on the distribution of species and plant community formation of the Dega Damot district in Northwestern Ethiopia. Vegetation and environmental data were collected from 86 plots (900 m2). Agglomerative hierarchical cluster analysis and redundancy analysis (RDA) with R software were used to identify plant communities and analyze the relationship between plant community types and environmental variables. Five plant community types were identified: Erica arborea-Osyris quadripartita, Discopodium penninervium-Echinops pappii, Olea europaea -Scolopia theifolia, Euphorbia abyssinica-Prunus africana, Dodonaea anguistifolia-Acokanthera schimperi. The RDA result showed that the variation of species distribution and plant community formation were significantly related to altitude, organic matter, moisture content, slope, sand, pH, EC, total nitrogen and phosphorus. Our results suggest that the variation of plant communities (Community 1, 2, 3, and 4) were closely related to environmental factors, including altitude, moisture content, OM, slope, sand, pH, EC, soil nitrogen, and phosphorus, among which altitude was the most important one. However, all the measured environmental variables are not correlated to Dodonaea anguistifolia-Acokanthera schimperi community type. Therefore, it can be concluded that some other environmental variables may influence the species composition, which is needed to be further investigated.


2020 ◽  
Author(s):  
José Ramón Martínez Batlle ◽  
Yntze van der Hoek

AbstractDespite being increasingly threatened by human-induced disturbances, dry forests remain the least studied and protected forest types in the Caribbean region. In contrast to many other forest systems in the world, we have little knowledge of the site-specific variation in vegetation communities within these forests, nor understand how plant species distribution is determined by environmental variables, including among them geological attributes. Here, we assessed the associations between plant communities and habitat types in a semi-deciduous forest of the Dominican Republic. We collected vegetation data from 23 sites within the Ocoa river basin, which we classified into six groups with a Random Forest algorithm, lithology, geomorphology, topography, and last decade history of forest loss as predictor variables. We established three main clusters: one group which encompassed sites with forest over a limestone substrate, four groups of sites with forests over a marlstone substrate with varied degrees of steepness and forest loss history, and one group that gathered all sites with forest over an alluvial substrate. In order to measure the associations of plant communities with groups of sites, we used the indicator value index (IndVal), which indicates whether a plant species is found in one or multiple habitat types, and the phi coefficient of association, which measures species preferences for habitats. We found that 16 species of woody plants are significantly associated with groups of sites by means of their indices. Our findings suggest that the detection of plant species associations with our selection of environmental variables is possible using a combination of indices. We show that there is considerable variation in plant community composition within the semi-deciduous forest studied, and suggest that conservation planning should focus on protection of this variation, while considering the significance and variability of geodiversity as well. In addition, we propose that our indicator groups facilitate vegetation mapping in nearby dry forests, where it is difficult to conduct thorough vegetation or environmental surveys. In short, our analyses hold potential for the development of site-specific management and protection measures for threatened semi-deciduous forests in the Caribbean.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12165
Author(s):  
Yuzu Sakata ◽  
Nami Shirahama ◽  
Ayaka Uechi ◽  
Kunihiro Okano

Increased ungulate browsing alters the composition of plant communities and modifies forest ecosystems worldwide. Ungulates alter their diet following changes in availability of plant species; however, we know little about how browse selection and plant community composition change with different stages of deer establishment. Here, we provide insight into this area of study by combining multiple approaches: comparison of the understory plant community, analysis of records of browsing damage, and DNA barcoding of sika deer feces at 22 sites in forests in northern Japan varying in when deer were first established. The coverage of vegetation and number of plant species were only lower at sites where deer were present for more than 20 years, while the difference in plant coverage among deer establishment years varied among plant species. Deer diet differed across establishment years, but was more affected by the site, thereby indicating that food selection by deer could change over several years after deer establishment. Plant life form and plant architecture explained the difference in plant coverage across establishment years, but large variability was observed in deer diet within the two categories. Integrating these results, we categorized 98 plant taxa into six groups that differed in vulnerability to deer browsing (degree of damage and coverage). The different responses to browsing among plant species inferred from this study could be a first step in predicting the short- and long-term responses of forest plant communities to deer browsing.


2020 ◽  
Vol 58 (1) ◽  
pp. 21-31
Author(s):  
Mengistu Teshome ◽  
Zebene Asfaw ◽  
Gemedo Dalle

Abstract For forest ecosystem management to be effective, explicit understanding of the species diversity-environmental relationship along elevation gradient is crucial. This study aimed at identifying and describing plant communities and also documenting their species diversity. Evaluation of relationships between selected environmental variables and species diversity was another objective of this study. Systematic sampling techniques were used to collect vegetation data in a total of forty two sample plots (size=20×20 m). Within main plots, four sub-plots of 5×5 m were established at four corners and – one sub-plot of the same size in the center. These plots were used for shrub and herb diversity assessment. Within each sample plot, all plant species were documented and their scientific names were identified. Environmental variables, such as: elevation, aspect and slope, were also recorded for each main plot. Species diversity was determined using Shannon-Wiener diversity index and evenness in R statistical software. Agglomerative hierarchical clustering method was used for plant community classification. The total of 44 plant species belonging to 30 families was documented. Four plant community types were identified with different diversity, evenness and species richness. These plant communities were: Afrocurpus falcatus-Ficus sur, Maesa lanceolata-Bersama abyssinica, Vernonia myriantha-Urera hypselodendron and Croton machrostachus-Tecleanobilis occurring at average elevation of 2521, 2429, 2329, and 2364 m asl, respectively. Maesa lanceolata-Bersama abyssinica community type exhibited the highest species diversity and evenness followed by Croton machrostachus-Teclea nobilis community type showing the fact that median elevation ranges were rich in species. Elevation and slope gradient explained significant variation in species richness in the studied forest. For effective conservation of biodiversity and sustainable management of the forest ecosystem, further research on the impacts of anthropogenic disturbances and soil properties is recommended as a result of this study.


2020 ◽  
Author(s):  
Katharina Ramskogler ◽  
Svenja Müller ◽  
Bettina Knoflach ◽  
Johann Stötter ◽  
Clemens Geitner ◽  
...  

&lt;p&gt;Glacier forelands are perfect for analysing the development of plant communities from zero onward. According to Matthews (1992), the chronosequence can act as a spatial representation of the temporal sequence. Therefore, it is ideal to analyse changes in landscape and land cover in time slices. Development of plant communities does not only depend on the age of the deposits, but also on topography, microclimate, soil development, and geomorphological processes as well as on biotic interactions. In the long term, permanent plots represent an adequate method to follow the colonisation on differently aged terrain throughout time.&lt;/p&gt;&lt;p&gt;The main research question of the study is: Do cryospheric changes influence plant community development in time and space? During the first study year we were focused on the following questions: i) How fast does a plant community evolve? ii) How many species do occur on different moraine stages? iii) How do soil parameters correlate with primary succession stages?&lt;/p&gt;&lt;p&gt;The study site is located in the southern part of the Central European Alps, Martell Valley (South Tyrol, Italy). We established 12 permanent plot clusters of 2 x 5 m on areas deglaciated between 1985 and 2018, two per retreat area. In each square meter of these clusters, species composition, cover, and number of individuals were sampled. On the ground moraines of the glacier stages 1911 and approximately 1850 we recorded species composition and cover on 10 x 10 m plots (four plots in total). In all plot clusters and plots on the old moraines, soil temperature and soil water potential as well as relevant soil parameters were measured.&lt;/p&gt;&lt;p&gt;We found up to two vascular plant species per square meter on areas ice free for one year and up to 16 vascular plant species per square meter on areas ice free since 1985.&lt;/p&gt;&lt;p&gt;On the moraines of 1911 were up to 39 vascular plant species per plot with a mean cover of 52.5 %. On the moraines of 1850 we found up to 43 vascular plant species with a mean cover of 40 %.&lt;/p&gt;&lt;p&gt;In the next step we will analyse the effects of pioneer, early and late successional species on morphodynamic processes and their response to these processes using functional traits.&lt;/p&gt;&lt;p&gt;Matthews, J.A. (1992): The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge.&lt;/p&gt;


2019 ◽  
Vol 6 (13) ◽  
pp. 453-465
Author(s):  
Somdatta Ghosh ◽  
D. Kuila ◽  
N. K. Verma

Early colonization of plants in an area is influenced mostly by climatic, edaphic and phytogeographic factors. As arbuscular mycorrhizae (AM) was associated with early invasion of land plants on earth, AM may have some role in defining the first seral community in any land. Two riverbanks were selected to study their pioneer plant community structure with species composition and diversity, soil characters and arbuscular mycorrhizal association; and correlations among these factors. Species composition, diversity and richness indices, active AM association of early colonizing plant species, soil texture, moisture, pH and E.C in two river banks differed. Similarity index for plant species between the two communities was poor. Diversity and richness indices were high in K site while evenness was high in R site. AM colonization and spore density correlated highly with plant cover and frequency in both riverbanks. Soil moisture showed a strong negative impact on mycorrhization, soil organic carbon showed little. Soil pH showed varied correlation in different sites. Early colonizing plants in R site with silt-loam soil with high moisture level are found poorly mycotrophic or nonmycotrophic; though plant cover correlated highly with mycotrophy in both sites. Plants in sandy soil of K site are highly mycotrophic and with high arbuscular and vesicular colonizations. The distribution of frequency in R site is highly deviated from Raunkiuer’s frequency class; in K site it is rather stable. The soil condition is only key factor to determine plant composition and plant-mycorrhizal relations influencing colonization of early seral community.


2013 ◽  
Vol 31 (2) ◽  
pp. 469-482 ◽  
Author(s):  
G. Concenço ◽  
M. Tomazi ◽  
I.V.T. Correia ◽  
S.A. Santos ◽  
L. Galon

In simple terms, a phytosociological survey is a group of ecological evaluation methods whose aim is to provide a comprehensive overview of both the composition and distribution of plant species in a given plant community. To understand the applicability of phytosociological surveys for weed science, as well as their validity, their ecological basis should be understood and the most suitable ones need to be chosen, because cultivated fields present a relatively distinct group of selecting factors when compared to natural plant communities. For weed science, the following sequence of steps is proposed as the most suitable: (1) overall infestation; (2) phytosociological tables/graphs; (3) intra-characterization by diversity; (4) inter-characterization and grouping by cluster analysis. A summary of methods is established in order to assist Weed Science researchers through their steps into the realm of phytosociology.


2019 ◽  
Vol 116 (15) ◽  
pp. 7371-7376 ◽  
Author(s):  
Jenalle L. Eck ◽  
Simon M. Stump ◽  
Camille S. Delavaux ◽  
Scott A. Mangan ◽  
Liza S. Comita

Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence—albeit less strongly than species-specific pathogens—and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.


1998 ◽  
Vol 20 (1) ◽  
pp. 119 ◽  
Author(s):  
B Fergusson ◽  
AJ Graham

The soil and plants at a 27.4 ha field site near Kalgoorlie, Western Australia, were surveyed and analysed with multivariate statistics. Cluster analysis identified four distinct plant communities at the study site. These were: Acacia acuminata shrubland Eucalyptus gvfithsii woodland Eucalyptus salrnonophloia woodland 'Ground Covers' - areas characterised by the presence of generalist herbs, low shrubs and weeds, and the absence of dominant upper storey species. Discriminant function analysis identified site elevation and soil exchangeable Ca as the primary environmental discriminants between the plant communities. Using these two variables, sample points were classified into one of the four plant communities. The two methods of classification matched well, with classification based on the two environmental variables providing an indication of which plant community would be most likely to establish in disturbed areas. This type of information can be important to revegetation programs in the region, guiding the use of appropriate plant species under different rehabilitation conditions. Key wcrds: environmental variables, plant communities, multivariate analysis, classification, revegetation


Botany ◽  
2008 ◽  
Vol 86 (12) ◽  
pp. 1416-1426 ◽  
Author(s):  
Amy C. Ganguli ◽  
David M. Engle ◽  
Paul M. Mayer ◽  
Eric C. Hellgren

Widespread encroachment of the fire-intolerant species Juniperus virginiana  L. into North American grasslands and savannahs where fire has largely been removed has prompted the need to identify mechanisms driving J. virginiana encroachment. We tested whether encroachment success of J. virginiana is related to plant species diversity and composition across three plant communities. We predicted J. virginiana encroachment success would (i) decrease with increasing diversity, and (ii) J. virginiana encroachment success would be unrelated to species composition. We simulated encroachment by planting J. virginiana seedlings in tallgrass prairie, old-field grassland, and upland oak forest. We used J. virginiana survival and growth as an index of encroachment success and evaluated success as a function of plant community traits (i.e., species richness, species diversity, and species composition). Our results indicated that J. virginiana encroachment success increased with increasing plant richness and diversity. Moreover, growth and survival of J. virginiana seedlings was associated with plant species composition only in the old-field grassland and upland oak forest. These results suggest that greater plant species richness and diversity provide little resistance to J. virginiana encroachment, and the results suggest resource availability and other biotic or abiotic factors are determinants of J. virginiana encroachment success.


Sign in / Sign up

Export Citation Format

Share Document