scholarly journals Interaction of Cyclic Loading (Low-Cyclic Fatigue) with Stress Corrosion Cracking (SCC) Growth Rate

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Rehmat Bashir ◽  
He Xue ◽  
Rui Guo ◽  
Yueqi Bi ◽  
Muhammad Usman

The structural integrity analysis of nuclear power plants (NPPs) is an essential procedure since the age of NPPs is increasing constantly while the number of new NPPs is still limited. Low-cyclic fatigue (LCF) and stress corrosion cracking (SSC) are the two main causes of failure in light-water reactors (LWRs). In the last few decades, many types of research studies have been conducted on these two phenomena separately, but the joint effect of these two mechanisms on the same crack has not been discussed yet though these two loads exist simultaneously in the LWRs. SCC is mainly a combination of the loading, the corrosive medium, and the susceptibility of materials while the LCF depends upon the elements such as compression, moisture, contact, and weld. As it is an attempt to combine SCC and LCF, this research focuses on the joint effect of SCC and LCF loading on crack propagation. The simulations are carried out using extended finite element method (XFEM) separately, for the SCC and LCF, on an identical crack. In the case of SCC, da/dt(mm/sec) is converted into da/dNScc (mm/cycle), and results are combined at the end. It has been observed that the separately calculated results for SCC da/dNScc and LCF da/dNm of crack growth rate are different from those of joint/overall effect,  da/dNom. By applying different SCC loads, the overall crack growth is measured as SCC load becomes the main cause of failure in LWRs in some cases particularly in the presence of residual stresses.

Author(s):  
Frederick W. Brust ◽  
R. E. Kurth ◽  
D. J. Shim ◽  
David Rudland

Risk based treatment of degradation and fracture in nuclear power plants has emerged as an important topic in recent years. One degradation mechanism of concern is stress corrosion cracking. Stress corrosion cracking is strongly driven by the weld residual stresses (WRS) which develop in nozzles and piping from the welding process. The weld residual stresses can have a large uncertainty associated with them. This uncertainty is caused by many sources including material property variations of base and welds metal, weld sequencing, weld repairs, weld process method, and heat inputs. Moreover, often mitigation procedures are used to correct a problem in an existing plant, which also leads to uncertainty in the WRS fields. The WRS fields are often input to probabilistic codes from weld modeling analyses. Thus another source of uncertainty is represented by the accuracy of the predictions compared with a limited set of measurements. Within the framework of a probabilistic degradation and fracture mechanics code these uncertainties must all be accounted for properly. Here we summarize several possibilities for properly accounting for the uncertainty inherent in the WRS fields. Several examples are shown which illustrate ranges where these treatments work well and ranges where improvement is needed. In addition, we propose a new method for consideration. This method consists of including the uncertainty sources within the WRS fields and tabulating them within tables which are then sampled during the probabilistic realization. Several variations of this process are also discussed. Several examples illustrating the procedures are presented.


Author(s):  
Deok Hyun Lee ◽  
Do Haeng Hur ◽  
Myung Sik Choi ◽  
Kyung Mo Kim ◽  
Jung Ho Han ◽  
...  

Occurrences of a stress corrosion cracking in the steam generator tubes of operating nuclear power plants are closely related to the residual stress existing in the local region of a geometric change, that is, expansion transition, u-bend, ding, dent, bulge, etc. Therefore, information on the location, type and quantitative size of a geometric anomaly existing in a tube is a prerequisite to the activity of a non destructive inspection for an alert detection of an earlier crack and the prediction of a further crack evolution [1].


Author(s):  
Akihiro Mano ◽  
Jinya Katsuyama ◽  
Yinsheng Li

Abstract A probabilistic fracture mechanics (PFM) analysis code, PASCAL-SP, has been developed by Japan Atomic Energy Agency (JAEA) to evaluate the failure probability of piping within nuclear power plants considering aged-related degradations such as stress corrosion cracking and fatigue for both pressurized water reactor and boiling water reactor environments. To strengthen the applicability of PASCAL-SP, a benchmarking study is being performed with a PFM analysis code, xLPR, which has been developed by U.S.NRC in collaboration with EPRI. In this benchmarking study, deterministic and probabilistic analyses are undertaken on primary water stress corrosion cracking using the common analysis conditions. A deterministic analysis on the weld residual stress distributions is also considered. These analyses are carried out by U.S.NRC and JAEA independently using their own codes. Currently, the deterministic analyses by both xLPR and PASCAL-SP codes have been finished and probabilistic analyses are underway. This paper presents the details of conditions and comparisons of the results between the two aforementioned codes for the deterministic analyses. Both codes were found to provide almost the same results including the values of stress intensity factor. The conditions and results of the probabilistic analysis obtained from PASCAL-SP are also discussed.


Author(s):  
Edward Friedman

First-order reliability methodology (FORM) is used to develop reliability-based design factors for deterministic analyses of stress corrosion cracking. The basic elements of FORM as applied to structural reliability problems are reviewed and then employed specifically to stress corrosion cracking evaluations. Failure due to stress corrosion cracking is defined as crack initiation followed by crack growth to a critical depth. The stress corrosion cracking process is thus represented in terms of a crack initiation time model and a crack growth rate model, with the crack growth rate integrated from the initiation time to the time at which the crack grows to its critical depth. Both models are described by log-normal statistical distribution functions. A procedure is developed to evaluate design factors that are applied to the mean values of the crack initiation time and the crack growth rate for specified temperature and stress conditions. The design factors, which depend on the standard deviations of the statistical distributions, are related to a target reliability, which is inversely related to an acceptable probability of failure. The design factors are not fixed, but are evaluated on a case-to-case basis for each application. The use of these design factors in a deterministic analysis assures that the target reliability will be attained and the corresponding acceptable probability of failure will not be exceeded. An example problem illustrates use of this procedure.


Author(s):  
Poh-Sang Lam ◽  
Andrew J. Duncan ◽  
Lisa N. Ward ◽  
Robert L. Sindelar ◽  
Yun-Jae Kim ◽  
...  

Abstract Stress corrosion cracking may occur when chloride-bearing salts deposit and deliquesce on the external surface of stainless steel spent nuclear fuel storage canisters at weld regions with high residual stresses. Although it has not yet been observed, this phenomenon leads to a confinement concern for these canisters due to its potential for radioactive materials breaching through the containment system boundary provided by the canister wall during extended storage. The tests for crack growth rate have been conducted on bolt-load compact tension specimens in a setup designed to allow initially dried salt deposits to deliquesce and infuse to the crack front under conditions relevant to the canister storage environments (e.g., temperature and humidity). The test and characterization protocols are performed to provide bounding conditions in which cracking will occur. The results after 2- and 6-month exposure are examined in relation to previous studies in condensed brine and compared with other experimental data in the open literature. The knowledge gained from bolt-load compact tension testing is being applied to a large plate cut from a mockup commercial spent nuclear fuel canister to demonstrate the crack growth behavior induced from starter cracks machined in regions where the welding residual stress is expected. All these tests are conducted to support the technical basis for ASME Boiler and Pressure Vessel Section XI Code Case N-860.


Author(s):  
Gang Chen ◽  
Puning Jiang ◽  
Xingzhu Ye ◽  
Junhui Zhang ◽  
Yifeng Hu ◽  
...  

Although stress corrosion cracking (SCC) and corrosion fatigue cracking can occur in many locations of nuclear steam turbines, most of them initiate at low pressure disc rim, rotor groove and keyway of the shrunk-on disc. For nuclear steam turbine components, long life endurance and high availability are very important factors in the operation. Usually nuclear power plants operating more than sixty years are susceptible to this failure mechanism. If SCC or corrosion fatigue happens, especially in rotor groove or keyway, it has a major influence on nuclear steam turbine life. In this paper, established methods for the SCC and corrosion fatigue-controlled life prediction of steam turbine components were applied to evaluating a new shrunk-on disc that had suffered local keyway surface damage during manufacture and loss of residual compressive stress.


CORROSION ◽  
10.5006/3242 ◽  
2019 ◽  
Vol 75 (11) ◽  
pp. 1371-1382 ◽  
Author(s):  
Tomáš Prošek ◽  
Jiří Lieberzeit ◽  
Alan Jarvis ◽  
Lionel Kiener

Atmospherically-induced stress corrosion cracking (AISCC) in the presence of chloride deposits has been responsible for considerable incidents of rock climbing anchors breaking under minimal loads in seaside locations, putting climbers lives at stake. However, to date, failures due to AISCC have only been documented in anchors made of Type 304/304L and similar, and no rigorously documented failures have been shown to occur to Type 316/316L anchors. In order to support preparation of a new standard classifying anchors according to their corrosion resistance, the influence of environmental parameters such as periodic washing of chloride deposits, electrolyte pH, and type of rock on AISCC initiation and crack growth rate was studied in laboratory conditions by exposing U-bent specimens of stainless steel Types 321, 304, and 316L with MgCl2 deposits in air at 40°C to 50°C and at 35% to 45% relative humidity. The type of rock and electrolyte pH were not critical parameters for AISCC. Alkaline conditions only slightly prolonged stable crack initiation period and decreased the crack growth rate. Periodic washing in sufficiently short intervals was capable of significantly retarding or even arresting AISCC. The crack growth rate in Type 316L stainless steel was 2- to 3-fold slower than in the molybdenum-free Types 304 and 321. These last two effects are quite likely responsible for the lack of failures observed in Type 316/316L. In view of the lifetime expectancy of rock climbing anchors and other safety-relevant members, the crack growth rate was unacceptably high in all studied materials and their installation should be avoided in vulnerable seaside regions.


Sign in / Sign up

Export Citation Format

Share Document