scholarly journals Regional Difference in Spatial Effects: A Theoretical and Empirical Study on the Environmental Effects of FDI and Corruption in China

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Dengli Tang ◽  
Shijie Li ◽  
Yuanhua Yang ◽  
Lianglie Gu

Environmental pollution has aroused extensive concern worldwide in recent years. Existing studies on the relationship between foreign direct investment (FDI) and environmental pollution have, however, paid little attention to spatial effects and regional corruption’s environmental performance from a spatial perspective. To address this gap, we investigate the spatial agglomeration effects of environmental pollution in China and the environmental effects of FDI and regional corruption using spatial econometric analysis method. The results indicate significant spatial agglomeration effects in environmental pollution. The results of spatial panel data models reveal that the estimation coefficient of FDI is significantly negative, and FDI inflows reduce China’s environmental pollution. Regional corruption is shown to increase environmental pollution, thereby contributing further to environmental degradation. The interaction coefficient of FDI and regional corruption is significantly positive, indicating that regional corruption reduces the environmental benefits derived from FDI. In addition, regional differences in spatial effects verify that regional corruption also reduces the environmental performance of FDI in the central region. Meanwhile, regional corruption increases the environmental aggravation effects of FDI in the eastern region but weakens it in the western region. Our findings lead to some policy recommendations with regard to environmental protection and pollution control.

2021 ◽  
Vol 13 (10) ◽  
pp. 5439
Author(s):  
Chenggang Li ◽  
Tao Lin ◽  
Zhenci Xu ◽  
Yuzhu Chen

With the development of economic globalization, some local environmental pollution has become a global environmental problem through international trade and transnational investment. This paper selects the annual data of 30 provinces in China from 2000 to 2017 and adopts exploratory spatial data analysis methods to explore the spatial agglomeration characteristics of haze pollution in China’s provinces. Furthermore, this paper constructs a spatial econometric model to test the impact of foreign direct investment (FDI) and industrial structure transformation on haze pollution. The research results show that the high-high concentration area of haze pollution in China has shifted from the central and western regions to the eastern region and from inland regions to coastal regions. When FDI increases by 1%, haze pollution in local and neighboring areas will be reduced by 0.066% and 0.3538%, respectively. However, the impact of FDI on haze pollution is heterogeneous in different stages of economic development. FDI can improve the rationalization level of industrial structure, and then inhibit the haze pollution. However, FDI inhibits the upgrading level of industrial structure to a certain extent, and then aggravates the haze pollution. The research in this paper provides an important decision-making basis for coordinating the relationship between FDI and environmental pollution and realizing green development.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1172
Author(s):  
Hafiz Haq ◽  
Petri Välisuo ◽  
Seppo Niemi

Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 524
Author(s):  
Walguen Oscar ◽  
Jean Vaillant

Cox processes, also called doubly stochastic Poisson processes, are used for describing phenomena for which overdispersion exists, as well as Poisson properties conditional on environmental effects. In this paper, we consider situations where spatial count data are not available for the whole study area but only for sampling units within identified strata. Moreover, we introduce a model of spatial dependency for environmental effects based on a Gaussian copula and gamma-distributed margins. The strength of dependency between spatial effects is related with the distance between stratum centers. Sampling properties are presented taking into account the spatial random field of covariates. Likelihood and Bayesian inference approaches are proposed to estimate the effect parameters and the covariate link function parameters. These techniques are illustrated using Black Leaf Streak Disease (BLSD) data collected in Martinique island.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bin Liao ◽  
Ting Wang

With the acceleration of industrialization and urbanization in China, a large amount of waste in industrial parks has become the main cause of regional environmental pollution. In order to solve this problem, this paper relied on artificial intelligence’s prediction technology and image recognition technology to intelligently upgrade the traditional industrial waste planning management system and designed a waste intelligent classification center with intelligent prediction and intelligent classification capabilities. So, as to realize this new intelligent classification center and explain its value, this paper explains the key implementation technology of this intelligent classification center and validates it by constructing a multitarget location model that considers both economic and environmental benefits.


2012 ◽  
Vol 518-523 ◽  
pp. 4425-4430
Author(s):  
Li Ping He ◽  
Yu Chen ◽  
Xue Ru Wang

The enormous consumption of resources and energy of construction industry results in severe environmental pollution. From both the views of energy consumption and environmental footprint, this article analyzed theoretically the energy consumption and environmental benefits on life cycle of wood-frame building, in order to determine the general impact on environment by appropriate building materials, so that some ideas for development of wood-frame architecture can be concluded.


Sign in / Sign up

Export Citation Format

Share Document