scholarly journals Design and Experiment Study of Ultrasonic Longitudinal-Torsional Compound Consolidation Vibration System for Metal Foil

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangqiang Zhong ◽  
Benxue Zhang ◽  
Weiqing Huang ◽  
Zhimin Di ◽  
Huajie Fang

In order to realize the connection for metal foil, a longitudinal-torsional compound consolidation vibration system is proposed, and relative experiments are carried out. Firstly, the structure of longitudinal-torsional compound consolidation vibration system was designed, detailed structural design of the compound piezoelectric transducer and the compound horn in the vibration system was carried out, and torsional vibration analysis of the compound horn with spiral grooves was carried out based on mechanical principle. Secondly, modal calculation and harmonic response analysis of longitudinal-torsional compound consolidation vibration system were carried out, and corresponding vibration mode and harmonic frequency were obtained. The effect of structural parameters for the compound horn on the frequency of the consolidation vibration system was analysed, and structural parameters of the compound horn were optimized. Finally, the prototype was made, and the experimental platform was built to test the amplitude. When the frequency is near 20000 Hz, the resonance is achieved in three directions at the same time, and the resonance frequency is 19800 Hz. Through the frequency-scanning test, the maximum longitudinal amplitude of the consolidation vibration system is 16 μm, and the maximum torsional amplitudes of X and Y are 7.9 μm and 8.1 μm. The longitudinal-torsional compound consolidation vibration system can realize the connection of the same and different metal foils and has broad application prospects.

2011 ◽  
Vol 84-85 ◽  
pp. 209-213
Author(s):  
Xue Ping Wang ◽  
Zhen Wei Zhang ◽  
Yong Sheng Deng

The chassis of disc vibration dryer is easy to be destroyed during operation. Aimed at this problem, this paper analyses harmonic responses of dryer vibration system based on ANSYS. The curves both in the relation between the displacement and the frequency and in the realtion between the stress and the frequency about several special positions in which the chassis is easy to be destroyed were obtained. The analyses to curves provided a basis for this kind of dryer's structural design, improvement and maintenance.


2013 ◽  
Vol 690-693 ◽  
pp. 925-932
Author(s):  
Miao Wang ◽  
Hai Bo Li ◽  
Ya Qun Liu ◽  
Xiao Cheng Huang

Analysis of the vibration characteristics of slope is the basis of dynamic analysis of slope; therefore, it has an important engineering significance. In this paper, ideal joint rock slope was studied by the modal analysis and harmonic response analysis module in the ANSYS software, meanwhile, the section of the model size and the effects of the structural parameters on the vibration characteristics of slope were also discussed. The results show that the stiffness of the structural surface is the key factors that affect the vibration characteristics of slope, and with the stiffness of structural surface increases, the first modal shape of slope was changed from dislocation vibration that along the structural surface to horizontal vibration. Only the first natural frequency can be excited the "resonance" phenomenon in the horizontal direction under the seismic load. Therefore, the joint slope is more easily to be excited "resonance" under earthquake load because of the first natural frequency of joint slope is smaller than homogeneous slope; moreover, this is consistent to the investigation results of Wenchuan Earthquake.


2021 ◽  
Vol 11 (2) ◽  
pp. 699
Author(s):  
Worapol Tangsopa ◽  
Jatuporn Thongsri

At present, development of manufacturer’s ultrasonic cleaning tank (UCT) to match the requirements from consumers usually relies on computer simulation based on harmonic response analysis (HRA). However, this technique can only be used with single-frequency UCT. For dual frequency, the manufacturer used information from empirical experiment alongside trial-and-error methods to develop prototypes, resulting in the UCT that may not be fully efficient. Thus, lack of such a proper calculational method to develop the dual frequency UCT was a problem that greatly impacted the manufacturers and consumers. To resolve this problem, we proposed a new model of simulation using transient dynamics analysis (TDA) which was successfully applied to develop the prototype of dual frequency UCT, 400 W, 18 L in capacity, eight horn transducers, 28 and 40 kHz frequencies for manufacturing. The TDA can indicate the acoustic pressure at all positions inside the UCT in transient states from the start to the states ready for proper cleaning. The calculation also reveals the correlation between the positions of acoustic pressure and the placement positions of transducers and frequencies. In comparison with the HRA at 28 kHz UCT, this TDA yielded the results more accurately than the HRA simulation, comparing to the experiments. Furthermore, the TDA can also be applied to the multifrequency UCTs as well. In this article, the step-by-step development of methodology was reported. Finally, this simulation can lead to the successful design of the high-performance dual frequencies UCT for the manufacturers.


2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.


2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.


2011 ◽  
Vol 268-270 ◽  
pp. 200-204
Author(s):  
Bao Cheng Zhang ◽  
Peng Fei Zhao ◽  
Peng Li

Using the method of the parameter study, some important dimensions of the cylinder head of an internal-combustion engine are analyzed. Under the mechanical load, the variational rules of the Von Mises maximum stress on cylinder head are obtained, which are influenced by the thickness of the floor plate, head plate, jobbing sheet, standing partition board, and side plate of inlet port and exhaust port. A hypothesis is verified that there is an ideal matching point among those above-mentioned main parameters. The quantificational proportion relations, between these key structural parameters and Von-Mises maximum stress of cylinder head, can provide a good help for the cylinder head’s structural design.


2013 ◽  
Vol 706-708 ◽  
pp. 1782-1785
Author(s):  
Jiao Wang ◽  
Ya Shu Li ◽  
Yun Dong Sha ◽  
Qing Kai Han

A successful prediction that whether a compressor blade is able to overcome the resonance fatigue and fatigue life of forced vibration is based on its harmonic response analysis.Hard coatings with metal or ceramic substrate are effective to change the natural characteristics and vibration amplitude of a compressor blade so that to improve the anti-vibration fatigue capability. In this paper, modal analysis and harmonic response analysis based on the finite element method are achieved to investigate the contributions of the two different hard coatings on the natural characteristics and vibration amplitude of a compressor blade. The two kinds of hard coatings are modeled by both anisotropic materials and involving their piezoelectric or piezomagnetic effects. The blade is modeled as an isotropic one. The natural frequencies and vibration amplitude of blade with different coating thickness are numerically calculated and compared. Results show that the hard coatings with different thickness play an important role in the natural characteristics and harmonic response analysis of the blade.


2021 ◽  
Vol 12 (1) ◽  
pp. 689-700
Author(s):  
Ao Lei ◽  
Chuan-Xue Song ◽  
Yu-Long Lei ◽  
Yao Fu

Abstract. To make vehicles more reliable and efficient, many researchers have tried to improve the rotor performance. Although certain achievements have been made, the previous finite element model did not reflect the historical process of the motor rotor well, and the rigidity and mass in rotor optimization are less discussed together. This paper firstly introduces fractional order into a finite element model to conduct the harmonic response analysis. Then, we propose an optimal design framework of a rotor. In the framework, objective functions of rigidity and mass are defined, and the relationship between high rigidity and the first-order frequency is discussed. In order to find the optimal values, an accelerated optimization method based on response surface (ARSO) is proposed to find the suitable design parameters of rigidity and mass. Because the higher rigidity can be transformed into the first-order natural frequency by objective function, this paper analyzes the first-order frequency and mass of a motor rotor in the experiment. The results proved that not only is the fractional model effective, but also the ARSO can optimize the rotor structure. The first-order natural frequency of asynchronous motor rotor is increased by 11.2 %, and the mass is reduced by 13.8 %, which can realize high stiffness and light mass of asynchronous motor rotors.


Sign in / Sign up

Export Citation Format

Share Document