scholarly journals Molecular Dynamics Study on SiO2 Interfaces of Nonfiring Solids

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Tomohiro Sato ◽  
Atsuto Kubota ◽  
Ken-ichi Saitoh ◽  
Masayoshi Fuji ◽  
Chika Takai ◽  
...  

As a sustainable ecosystem, the general firing process for ceramics emits large amounts of CO2 gas; thus in ceramics production, the focus is the nonfiring process; however, the solidification and strengthen mechanism of this nonfiring system, which essentially reacts between surface-activated ceramic particles and a solvent, has not been elucidated to date. The nonfiring process had three steps, i.e., particle surface activate process by grinding process, maintaining the active state until starting nonfiring solidification begins, and nonfiring solidification process. Thus, in this study, the reaction of silica and water was simulated by adapting molecular dynamics based on LAMMPS with ReaxFF potentials. Reproducing the activated silica surface state, three ended models called O model, Si model, and OH model were prepared which indicated ended molecules of each surface. These models and a water molecule as a solvent were bonded in the atomic scale, and the energetic state and mechanical properties were evaluated. A reacted or structured O-H-O bond was reproduced in the nonfiring process in the O-ended model. The bond was a hydrogen bond. A Si-O-Si bond was produced when a Si atom was ended on the interface. The bonded interface was able to tensile. However, the tensile strength was weaker than that of the solid silica model. The nonbonded OH model did not have tensile strength.

RSC Advances ◽  
2016 ◽  
Vol 6 (31) ◽  
pp. 26361-26373 ◽  
Author(s):  
G. Rajasekaran ◽  
Avinash Parashar

A one atom-thick sheet of carbon exhibits outstanding elastic moduli and tensile strength in its pristine form but structural defects which are inevitable in graphene due to its production techniques can alter its structural properties.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Xian Shi ◽  
Xiaoqiao He ◽  
Ligang Sun ◽  
Xuefeng Liu

Abstract Networks based on carbon nanotube (CNT) have been widely utilized to fabricate flexible electronic devices, but defects inevitably exist in these structures. In this study, we investigate the influence of the CNT-unit defects on the mechanical properties of a honeycomb CNT-based network, super carbon nanotube (SCNT), through molecular dynamics simulations. Results show that tensile strengths of the defective SCNTs are affected by the defect number, distribution continuity and orientation. Single-defect brings 0 ~ 25% reduction of the tensile strength with the dependency on defect position and the reduction is over 50% when the defect number increases to three. The distribution continuity induces up to 20% differences of tensile strengths for SCNTs with the same defect number. A smaller arranging angle of defects to the tensile direction leads to a higher tensile strength. Defective SCNTs possess various modes of stress concentration with different concentration degrees under the combined effect of defect number, arranging direction and continuity, for which the underlying mechanism can be explained by the effective crack length of the fracture mechanics. Fundamentally, the force transmission mode of the SCNT controls the influence of defects and the cases that breaking more force transmission paths cause larger decreases of tensile strengths. Defects are non-negligible factors of the mechanical properties of CNT-based networks and understanding the influence of defects on CNT-based networks is valuable to achieve the proper design of CNT-based electronic devices with better performances. Graphical Abstract


2016 ◽  
Vol 18 (26) ◽  
pp. 17461-17469 ◽  
Author(s):  
Z. Y. Hou ◽  
K. J. Dong ◽  
Z. A. Tian ◽  
R. S. Liu ◽  
Z. Wang ◽  
...  

The effect of the cooling rate on the solidification process of liquid aluminium is studied using a large-scale molecular dynamics method.


Author(s):  
Mohammad Moulod ◽  
Gisuk Hwang

Fundamental understanding of the water in graphene is crucial to optimally design and operate the sustainable energy, water desalination, and bio-medical systems. A numerous atomic-scale studies have been reported, primarily articulating the surface interactions (interatomic potentials) between the water and graphene. However, a systematic comparative study among the various interatomic potentials is rare, especially for the water transport confined in the graphene nanostructure. In this study, the effects of different interatomic potentials and gap sizes on water self-diffusivity are investigated using the molecular dynamics simulation at T = 300 K. The water is confined in the rigid graphene nanogap with the various gap sizes Lz = 0.7 to 4.17 nm, using SPC/E and TIP3P water models. The water self-diffusivity is calculated using the mean squared displacement approach. It is found that the water self-diffusivity in the confined region is lower than that of the bulk water, and it decreases as the gap size decreases and the surface energy increases. Also, the water self-diffusivity nearly linearly decreases with the increasing surface energy to reach the bulk water self-diffusivity at zero surface energy. The obtained results provide a roadmap to fundamentally understand the water transport properties in the graphene geometries and surface interactions.


CrystEngComm ◽  
2018 ◽  
Vol 20 (25) ◽  
pp. 3569-3580 ◽  
Author(s):  
Xiaoxiao Sui ◽  
Yongjian Cheng ◽  
Naigen Zhou ◽  
Binbing Tang ◽  
Lang Zhou

Based on the Stillinger–Weber potential, molecular dynamics simulations of the solidification processes of multicrystalline silicon were carried out.


Author(s):  
Kunio Fujiwara ◽  
Tomoya Miyamoto ◽  
Shota Uchida ◽  
Masahiko Shibahara

2021 ◽  
Author(s):  
Nadire Nayir ◽  
Mert Y. Sengul ◽  
Anna L. Costine ◽  
Petra Reinke ◽  
Siavash Rajabpour ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document