Investigation of the Atomic-Scale Friction of Boron Doped Diamond Using Molecular Dynamics

2014 ◽  
Vol 11 (6) ◽  
pp. 1550-1555 ◽  
Author(s):  
Liang Wang ◽  
Bin Shen ◽  
Fanghong Sun
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
S. N. Polyakov ◽  
V. N. Denisov ◽  
V. V. Denisov ◽  
S. I. Zholudev ◽  
A. A. Lomov ◽  
...  

AbstractThe detailed studies of the surface structure of synthetic boron-doped diamond single crystals using both conventional X-ray and synchrotron nano- and microbeam diffraction, as well as atomic force microscopy and micro-Raman spectroscopy, were carried out to clarify the recently discovered features in them. The arbitrary shaped islands towering above the (111) diamond surface are formed at the final stage of the crystal growth. Their lateral dimensions are from several to tens of microns and their height is from 0.5 to 3 μm. The highly nonequilibrium conditions of crystal growth enhance the boron solubility and, therefore, lead to an increase of the boron concentrations in the islands on the surface up to 1022 cm−3, eventually generating significant stresses in them. The stress in the islands is found to be the volumetric tensile stress. This conclusion is based on the stepwise shift of the diamond Raman peak toward lower frequencies from 1328 to 1300 cm−1 in various islands and on the observation of the shift of three low-intensity reflections at 2-theta Bragg angles of 41.468°, 41.940° and 42.413° in the X-ray diffractogram to the left relative to the (111) diamond reflection at 2theta = 43.93°. We believe that the origin of the stepwise tensile stress is a discrete change in the distances between boron–carbon layers with the step of 6.18 Å. This supposition explains also the stepwise (step of 5 cm−1) behavior of the diamond Raman peak shift. Two approaches based on the combined application of Raman scattering and X-ray diffraction data allowed determination of the values of stresses both in lateral and normal directions. The maximum tensile stress in the direction normal to the surface reaches 63.6 GPa, close to the fracture limit of diamond, equal to 90 GPa along the [111] crystallographic direction. The presented experimental results unambiguously confirm our previously proposed structural model of the boron-doped diamond containing two-dimensional boron–carbon nanosheets and bilayers.


2003 ◽  
Vol 764 ◽  
Author(s):  
Hiroyuki Togawa ◽  
Hideki Ichinose

AbstractAtomic resolution high-voltage transmission electron microscopy and electron energy loss spectroscopy were performed on grain boundaries of boron-doped diamond, cooperated with the ab-initio calculation. Segregated boron in the {112}∑3 boundary was caught by the EELS spectra. The change in atomic structure of the segregated boundary was successfully observed from the image by ARHVTEM. Based on the ARHVTEM image, a segregted structure model was proposed.


2015 ◽  
Vol 14 (6) ◽  
pp. 1339-1345
Author(s):  
Monica Ihos ◽  
Florica Manea ◽  
Maria Jitaru ◽  
Corneliu Bogatu ◽  
Rodica Pode

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Boris Vladimirovich Spitsyn ◽  
Alexander Evgenievich Alexenko ◽  
Alexander Mihailovich Polyansky ◽  
...  

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.


2020 ◽  
Vol 1135 ◽  
pp. 73-82 ◽  
Author(s):  
Zhen Yang ◽  
Mingji Li ◽  
Hongji Li ◽  
Huayi Li ◽  
Cuiping Li ◽  
...  

2013 ◽  
Vol 25 (7) ◽  
pp. 1734-1741 ◽  
Author(s):  
Ana Paula Pires Eisele ◽  
Débora Nóbile Clausen ◽  
César Ricardo Teixeira Tarley ◽  
Luiz Henrique Dall'Antonia ◽  
Elen Romão Sartori

2021 ◽  
Vol 118 (5) ◽  
pp. 052108
Author(s):  
D. Araujo ◽  
F. Lloret ◽  
G. Alba ◽  
M. P. Alegre ◽  
M. P. Villar

2021 ◽  
Vol 93 (14) ◽  
pp. 5831-5838
Author(s):  
Tomohiro Ando ◽  
Kai Asai ◽  
Julie Macpherson ◽  
Yasuaki Einaga ◽  
Takeshi Fukuma ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Kosowska ◽  
Paweł Jakóbczyk ◽  
Michał Rycewicz ◽  
Alex Vitkin ◽  
Małgorzata Szczerska

AbstractWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifically, we combined a fiber-optic Fabry–Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-of-principle of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond film deposited on a silica substrate. The film plays the dual role of being the working electrode in the electrochemical reaction, as well as affording the reflectivity to enable the optical interferometry measurements. Optical responses during the redox reactions of the electrochemical process are presented. This work proves that simultaneous opto-electrochemical measurements of liquids are possible.


Sign in / Sign up

Export Citation Format

Share Document