scholarly journals A Review of Cracking Behavior and Mechanism in Clayey Soils Related to Desiccation

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xin Wei ◽  
Chongyang Gao ◽  
Ke Liu

Cracks in clayey soils are common during desiccation. The presence of cracks significantly alters the mechanical and hydraulic properties of soils. The objective of this article is to summarize the works on cracking behavior and mechanism in clayey soils related to desiccation. Historical field investigations, laboratory experimentations, identified mechanisms, and numerical approaches for modeling the process of cracking during desiccation are discussed. The experimental approaches for interpreting the mechanisms of cracking are systematically summarized and comprehensively reviewed based on the in situ observations and laboratory experimentations from the literature. The soil mechanics-based approaches resumed in this article according to the fracture mechanics theory and numerical results highlight the cracking development mechanism. Concerning the plasticity characteristics of clayey soils, researches on soil fracture mechanics should be paid more attention. More in situ experimentations and numerical researches are suggested for future researches to better understand the cracking behavior and mechanism in clayey soils related to desiccation.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7288
Author(s):  
Jan Fedorowicz ◽  
Lidia Fedorowicz ◽  
Marta Kadela

The article aims to present an effective numerical method for the behaviour analysis and safety assessment of a subsurface layer of subsoil in the existing or predicted states of mining and post-mining deformations. Based on our own analytical record, using the equations of the Modified Cam-Clay model, the description of limit states in the subsurface layer of subsoil was validated, making it consistent with in situ observations. The said effect was demonstrated by comparing numerical analyses of the subsoil layer subjected to the limit state, using the Modified Cam-Clay (MCC) model and the Coulomb-Mohr model (C-M). The article also presents the applicability potential of the numerical analysis of the loosened subsoil layer for the assessment of protection elements (e.g., geo-matresses) used under linear structures in the areas subjected to mining and post-mining impacts.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2398
Author(s):  
Changqing Qi ◽  
Yuxia Bai ◽  
Jin Liu ◽  
Fan Bu ◽  
Debi Prasanna Kanungo ◽  
...  

There has been a growing interest in polymer applied for soil reinforcement in recent years. However, there little attention has been paid to the effects of polymer on soil cracking behavior, and cracks significantly change soil strength and hydraulic properties and alter reinforcement effectiveness. This study investigated the desiccation cracking behavior of polyurethane (PU) and polyacrylamide (PAM) admixed clayey soils with different polymer concentrations by performing desiccation cracking tests. Scanning electron microscope (SEM) observation was also carried out to obtain the internal structure of these soils. The results show that PU and PAM addition both prolonged the initial evaporation stage, accelerated later evaporation processes, and the effects were related to polymer concentration. Final cracks morphology analyses show that PAM addition slightly reduced the cracking and crushing degree and kept the soil relatively intact, while PU addition slightly enhanced the cracking and crushing degree of soil. In addition, PU and PAM addition both increased the width and length of cracks. The scanning electron microscopy (SEM) analyses show that the effects of polymer on soil evaporation and cracking could be concluded as: (1) storing water in voids, (2) influencing water immigration channel, (3) providing space for soil shrinkage, and (4) enhancing the connection between aggregates, which did not fully come into play because of the existence of hydrogel form. These achievements provide a certain basis for the research of desiccation cracking behavior of polymer treated soil and make significant sense for the safe and effective running of related projects.


Author(s):  
Jin-Jian Xu ◽  
Chao-Sheng Tang ◽  
Qing Cheng ◽  
Qi-liang Xu ◽  
Hilary I. Inyang ◽  
...  

Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Sze Hoon Gan ◽  
Zarinah Waheed ◽  
Fung Chen Chung ◽  
Davies Austin Spiji ◽  
Leony Sikim ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 1250
Author(s):  
Yanxing Hu ◽  
Tao Che ◽  
Liyun Dai ◽  
Lin Xiao

In this study, a machine learning algorithm was introduced to fuse gridded snow depth datasets. The input variables of the machine learning method included geolocation (latitude and longitude), topographic data (elevation), gridded snow depth datasets and in situ observations. A total of 29,565 in situ observations were used to train and optimize the machine learning algorithm. A total of five gridded snow depth datasets—Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth, Global Snow Monitoring for Climate Research (GlobSnow) snow depth, Long time series of daily snow depth over the Northern Hemisphere (NHSD) snow depth, ERA-Interim snow depth and Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) snow depth—were used as input variables. The first three snow depth datasets are retrieved from passive microwave brightness temperature or assimilation with in situ observations, while the last two are snow depth datasets obtained from meteorological reanalysis data with a land surface model and data assimilation system. Then, three machine learning methods, i.e., Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR), were used to produce a fused snow depth dataset from 2002 to 2004. The RFR model performed best and was thus used to produce a new snow depth product from the fusion of the five snow depth datasets and auxiliary data over the Northern Hemisphere from 2002 to 2011. The fused snow-depth product was verified at five well-known snow observation sites. The R2 of Sodankylä, Old Aspen, and Reynolds Mountains East were 0.88, 0.69, and 0.63, respectively. At the Swamp Angel Study Plot and Weissfluhjoch observation sites, which have an average snow depth exceeding 200 cm, the fused snow depth did not perform well. The spatial patterns of the average snow depth were analyzed seasonally, and the average snow depths of autumn, winter, and spring were 5.7, 25.8, and 21.5 cm, respectively. In the future, random forest regression will be used to produce a long time series of a fused snow depth dataset over the Northern Hemisphere or other specific regions.


Polar Biology ◽  
2021 ◽  
Author(s):  
Philipp Neitzel ◽  
Aino Hosia ◽  
Uwe Piatkowski ◽  
Henk-Jan Hoving

AbstractObservations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusaAglantha digitaleand appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores,Beroespp.,Euplokamissp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.


2018 ◽  
Vol 148 ◽  
pp. 177-187 ◽  
Author(s):  
Markus Alfreider ◽  
Darjan Kozic ◽  
Otmar Kolednik ◽  
Daniel Kiener

2020 ◽  
pp. 1-6
Author(s):  
Jiangling Li ◽  
Feifei Lai ◽  
Mei Leng ◽  
Qingcai Liu ◽  
Jian Yang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document