scholarly journals Recognition of Reconstructed Frontal Face Images Using FFT-PCA/SVD Algorithm

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Louis Asiedu ◽  
Felix O. Mettle ◽  
Joseph A. Mensah

Face recognition has gained prominence among the various biometric-based methods (such as fingerprint and iris) due to its noninvasive characteristics. Modern face recognition modules/algorithms have been successful in many application areas (access control, entertainment/leisure, security system based on biometric data, and user-friendly human-machine interfaces). In spite of these achievements, the performance of current face recognition algorithms/modules is still inhibited by varying environmental constraints such as occlusions, expressions, varying poses, illumination, and ageing. This study assessed the performance of Principal Component Analysis with singular value decomposition using Fast Fourier Transform (FFT-PCA/SVD) for preprocessing the face recognition algorithm on left and right reconstructed face images. The study found that average recognition rates for the FFT-PCA/SVD algorithm were 95% and 90% when the left and right reconstructed face images are used as test images, respectively. The result of the paired sample t-test revealed that the average recognition distances for the left and right reconstructed face images are not significantly different when FFT-PCA/SVD is used for recognition. FFT-PCA/SVD is recommended as a viable algorithm for recognition of left and right reconstructed face images.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Louis Asiedu ◽  
Bernard O. Essah ◽  
Samuel Iddi ◽  
K. Doku-Amponsah ◽  
Felix O. Mettle

The face is the second most important biometric part of the human body, next to the finger print. Recognition of face image with partial occlusion (half image) is an intractable exercise as occlusions affect the performance of the recognition module. To this end, occluded images are sometimes reconstructed or completed with some imputation mechanism before recognition. This study assessed the performance of the principal component analysis and singular value decomposition algorithm using discrete wavelet transform (DWT-PCA/SVD) as preprocessing mechanism on the reconstructed face image database. The reconstruction of the half face images was done leveraging on the property of bilateral symmetry of frontal faces. Numerical assessment of the performance of the adopted recognition algorithm gave average recognition rates of 95% and 75% when left and right reconstructed face images were used for recognition, respectively. It was evident from the statistical assessment that the DWT-PCA/SVD algorithm gives relatively lower average recognition distance for the left reconstructed face images. DWT-PCA/SVD is therefore recommended as a suitable algorithm for recognizing face images under partial occlusion (half face images). The algorithm performs relatively better on left reconstructed face images.


Author(s):  
PEI CHEN ◽  
DAVID SUTER

Illumination effects, including shadows and varying lighting, make the problem of face recognition challenging. Experimental and theoretical results show that the face images under different illumination conditions approximately lie in a low-dimensional subspace, hence principal component analysis (PCA) or low-dimensional subspace techniques have been used. Following this spirit, we propose new techniques for the face recognition problem, including an outlier detection strategy (mainly for those points not following the Lambertian reflectance model), and a new error criterion for the recognition algorithm. Experiments using the Yale-B face database show the effectiveness of the new strategies.


2013 ◽  
Vol 278-280 ◽  
pp. 1211-1214
Author(s):  
Jun Ying Zeng ◽  
Jun Ying Gan ◽  
Yi Kui Zhai

A fast sparse representation face recognition algorithm based on Gabor dictionary and SL0 norm is proposed in this paper. The Gabor filters, which could effectively extract local directional features of the image at multiple scales, are less sensitive to variations of illumination, expression and camouflage. SL0 algorithm, with the advantages of calculation speed,require fewer measurement values by continuously differentiable function approximation L0 norm and reconstructed sparse signal by minimizing the approximate L0 norm. The algorithm obtain the local feature face by extracting the Gabor face feature, reduce the dimensions by principal component analysis, fast sparse classify by the SL0 norm. Under camouflage condition, The algorithm block the Gabor facial feature and improve the speed of formation of the Gabor dictionary. The experimental results on AR face database show that the proposed algorithm can improve recognition speed and recognition rate to some extent and can generalize well to the face recognition, even with a few training image per class.


2015 ◽  
Vol 734 ◽  
pp. 562-567 ◽  
Author(s):  
En Zeng Dong ◽  
Yan Hong Fu ◽  
Ji Gang Tong

This paper proposed a theoretically efficient approach for face recognition based on principal component analysis (PCA) and rotation invariant uniform local binary pattern texture features in order to weaken the effects of varying illumination conditions and facial expressions. Firstly, the rotation invariant uniform LBP operator was adopted to extract the local texture feature of the face images. Then PCA method was used to reduce the dimensionality of the extracted feature and get the eigenfaces. Finally, the nearest distance classification was used to distinguish each face. The method has been accessed on Yale and ATR-Jaffe face databases. Results demonstrate that the proposed method is superior to standard PCA and its recognition rate is higher than the traditional PCA. And the proposed algorithm has strong robustness against the illumination changes, pose, rotation and expressions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhixue Liang

In the contactless delivery scenario, the self-pickup cabinet is an important terminal delivery device, and face recognition is one of the efficient ways to achieve contactless access express delivery. In order to effectively recognize face images under unrestricted environments, an unrestricted face recognition algorithm based on transfer learning is proposed in this study. First, the region extraction network of the faster RCNN algorithm is improved to improve the recognition speed of the algorithm. Then, the first transfer learning is applied between the large ImageNet dataset and the face image dataset under restricted conditions. The second transfer learning is applied between face image under restricted conditions and unrestricted face image datasets. Finally, the unrestricted face image is processed by the image enhancement algorithm to increase its similarity with the restricted face image, so that the second transfer learning can be carried out effectively. Experimental results show that the proposed algorithm has better recognition rate and recognition speed on the CASIA-WebFace dataset, FLW dataset, and MegaFace dataset.


2019 ◽  
Vol 16 (3) ◽  
pp. 172988141985171 ◽  
Author(s):  
Naeem Iqbal Ratyal ◽  
Imtiaz Ahmad Taj ◽  
Muhammad Sajid ◽  
Nouman Ali ◽  
Anzar Mahmood ◽  
...  

Face recognition underpins numerous applications; however, the task is still challenging mainly due to the variability of facial pose appearance. The existing methods show competitive performance but they are still short of what is needed. This article presents an effective three-dimensional pose invariant face recognition approach based on subject-specific descriptors. This results in state-of-the-art performance and delivers competitive accuracies. In our method, the face images are registered by transforming their acquisition pose into frontal view using three-dimensional variance of the facial data. The face recognition algorithm is initialized by detecting iso-depth curves in a coordinate plane perpendicular to the subject gaze direction. In this plane, discriminating keypoints are detected on the iso-depth curves of the facial manifold to define subject-specific descriptors using subject-specific regions. Importantly, the proposed descriptors employ Kernel Fisher Analysis-based features leading to the face recognition process. The proposed approach classifies unseen faces by pooling performance figures obtained from underlying classification algorithms. On the challenging data sets, FRGC v2.0 and GavabDB, our method obtains face recognition accuracies of 99.8% and 100% yielding superior performance compared to the existing methods.


Author(s):  
Tang-Tang Yi ◽  

In order to solve the problem of low recognition accuracy in recognition of 3D face images collected by traditional sensors, a face recognition algorithm for 3D point cloud collected by mixed image sensors is proposed. The algorithm first uses the 3D wheelbase to expand the face image edge. According to the 3D wheelbase, the noise of extended image is detected, and median filtering is used to eliminate the detected noise. Secondly, the priority of the boundary pixels to recognize the face image in the denoising image recognition process is determined, and the key parts such as the illuminance line are analyzed, so that the recognition of the 3D point cloud face image is completed. Experiments show that the proposed algorithm improves the recognition accuracy of 3D face images, which recognition time is lower than that of the traditional algorithm by about 4 times, and the recognition efficiency is high.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Huang ◽  
Kehua Su ◽  
Jamal El-Den ◽  
Tao Hu ◽  
Junlong Li

We proposed a face recognition algorithm based on both the multilinear principal component analysis (MPCA) and linear discriminant analysis (LDA). Compared with current traditional existing face recognition methods, our approach treats face images as multidimensional tensor in order to find the optimal tensor subspace for accomplishing dimension reduction. The LDA is used to project samples to a new discriminant feature space, while theKnearest neighbor (KNN) is adopted for sample set classification. The results of our study and the developed algorithm are validated with face databases ORL, FERET, and YALE and compared with PCA, MPCA, and PCA + LDA methods, which demonstrates an improvement in face recognition accuracy.


2021 ◽  
pp. 1-14
Author(s):  
N Kavitha ◽  
K Ruba Soundar ◽  
T Sathis Kumar

In recent years, the Face recognition task has been an active research area in computer vision and biometrics. Many feature extraction and classification algorithms are proposed to perform face recognition. However, the former usually suffer from the wide variations in face images, while the latter usually discard the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the Key points Local Binary/Tetra Pattern (KP-LTrP) and Improved Hough Transform (IHT) with the Improved DragonFly Algorithm-Kernel Ensemble Learning Machine (IDFA-KELM) is proposed to address the face recognition problem in unconstrained conditions. Initially, the face images are collected from the publicly available dataset. Then noises in the input image are removed by performing preprocessing using Adaptive Kuwahara filter (AKF). After preprocessing, the face from the preprocessed image is detected using the Tree-Structured Part Model (TSPM) structure. Then, features, such as KP-LTrP, and IHT are extracted from the detected face and the extracted feature is reduced using the Information gain based Kernel Principal Component Analysis (IG-KPCA) algorithm. Then, finally, these reduced features are inputted to IDFA-KELM for performing FR. The outcomes of the proposed method are examined and contrasted with the other existing techniques to confirm that the proposed IDFA-KELM detects human faces efficiently from the input images.


Author(s):  
Ahmed M. Alkababji ◽  
Sara Raed Abd

<span lang="EN-US">Face recognition is a considerable problem in the field of image processing. It is used daily in various applications from personal cameras to forensic investigations. Most of the provides solutions proposed based on full-face images, are slow to compute and need more storage. In this paper, we propose an effective way to reduce the features and size of the database in the face recognition method and thus we get an increase in the speed of discrimination by using half of the face. Taking advantage of face symmetry, the first step is to divide the face image into two halves, then the left half is processed using the principal component analysis (PCA) algorithm, and the results are compared by using Euclidian distance to distinguish the person. The system was trained and tested on ORL database. It was found that the accuracy of the system reached up to 96%, and the database was minimized by 46% and the running time was decreased from 120 msec to 70 msec with a 41.6% reduction.</span>


Sign in / Sign up

Export Citation Format

Share Document