scholarly journals On Some Properties of the New Generalized Fractional Derivative with Non-Singular Kernel

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Khalid Hattaf

This paper presents some new formulas and properties of the generalized fractional derivative with non-singular kernel that covers various types of fractional derivatives such as the Caputo–Fabrizio fractional derivative, the Atangana–Baleanu fractional derivative, and the weighted Atangana–Baleanu fractional derivative. These new properties extend many recent results existing in the literature. Furthermore, the paper proposes some interesting inequalities that estimate the generalized fractional derivatives of some specific functions. These inequalities can be used to construct Lyapunov functions with the aim to study the global asymptotic stability of several fractional-order systems arising from diverse fields of science and engineering.


2019 ◽  
Vol 3 (3) ◽  
pp. 39 ◽  
Author(s):  
Ndolane Sene ◽  
José Francisco Gómez Aguilar

This paper proposes novel analytical solutions of the mass-spring-damper systems described by certain generalized fractional derivatives. The Liouville–Caputo left generalized fractional derivative and the left generalized fractional derivative were used. The behaviors of the analytical solutions of the mass-spring-damper systems described by the left generalized fractional derivative and the Liouville–Caputo left generalized fractional derivative were represented graphically and the effect of the orders of the fractional derivatives analyzed. We finish by analyzing the global asymptotic stability and the converging-input-converging-state of the unforced mass-damper system, the unforced spring-damper, the spring-damper system, and the mass-damper system.



2018 ◽  
Vol 21 (5) ◽  
pp. 1238-1261 ◽  
Author(s):  
Mikhail I. Gomoyunov

Abstract The paper is devoted to the development of control procedures with a guide for fractional order dynamical systems controlled under conditions of disturbances, uncertainties or counteractions. We consider a dynamical system which motion is described by ordinary fractional differential equations with the Caputo derivative of an order α ∈ (0, 1). For the case when the guide is, in a certain sense, a copy of the system, we propose a mutual aiming procedure between the original system and guide. The proof of proximity between motions of the systems is based on the estimate of the fractional derivative of the superposition of a convex Lyapunov function and a function represented by the fractional integral of an essentially bounded measurable function. This estimate can be considered as a generalization of the known estimates of such type. We give an example that illustrates the workability of the proposed control procedures with a guide.



Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 49 ◽  
Author(s):  
Khalid Hattaf

This paper proposes a new definition of fractional derivative with non-singular kernel in the sense of Caputo which generalizes various forms existing in the literature. Furthermore, the version in the sense of Riemann–Liouville is defined. Moreover, fundamental properties of the new generalized fractional derivatives in the sense of Caputo and Riemann–Liouville are rigorously studied. Finally, an application in epidemiology as well as in virology is presented.



Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 475
Author(s):  
Ewa Piotrowska ◽  
Krzysztof Rogowski

The paper is devoted to the theoretical and experimental analysis of an electric circuit consisting of two elements that are described by fractional derivatives of different orders. These elements are designed and performed as RC ladders with properly selected values of resistances and capacitances. Different orders of differentiation lead to the state-space system model, in which each state variable has a different order of fractional derivative. Solutions for such models are presented for three cases of derivative operators: Classical (first-order differentiation), Caputo definition, and Conformable Fractional Derivative (CFD). Using theoretical models, the step responses of the fractional electrical circuit were computed and compared with the measurements of a real electrical system.



2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.



2013 ◽  
Vol 16 (4) ◽  
Author(s):  
Danijela Rajter-Ćirić ◽  
Mirjana Stojanović

AbstractWe consider fractional derivatives of a Colombeau generalized stochastic process G defined on ℝn. We first introduce the Caputo fractional derivative of a one-dimensional Colombeau generalized stochastic process and then generalize the procedure to the Caputo partial fractional derivatives of a multidimensional Colombeau generalized stochastic process. To do so, the Colombeau generalized stochastic process G has to have a compact support. We prove that an arbitrary Caputo partial fractional derivative of a compactly supported Colombeau generalized stochastic process is a Colombeau generalized stochastic process itself, but not necessarily with a compact support.





2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdon Atangana ◽  
Aydin Secer

The purpose of this note is to present the different fractional order derivatives definition that are commonly used in the literature on one hand and to present a table of fractional order derivatives of some functions in Riemann-Liouville sense On other the hand. We present some advantages and disadvantages of these fractional derivatives. And finally we propose alternative fractional derivative definition.



Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050070 ◽  
Author(s):  
CONG WU

In this paper, we work on a general comparison principle for Caputo fractional-order ordinary differential equations. A full result on maximal solutions to Caputo fractional-order systems is given by using continuation of solutions and a newly proven formula of Caputo fractional derivatives. Based on this result and the formula, we prove a general fractional comparison principle under very weak conditions, in which only the Caputo fractional derivative is involved. This work makes up deficiencies of existing results.



Sign in / Sign up

Export Citation Format

Share Document