scholarly journals Cell Proliferation and Tumor Induction by Ochratoxin A in Mouse Skin and Evaluation of Cyclin D1 and Cyclooxygenase-2 Expressions

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sai Yang ◽  
Yajia Wen

Motivation. Skin tumor is one of the frequent occurring forms of cancer where 2-3 million instances are reported worldwide. The ultraviolet rays along with the environmental pollutants and other contaminants can be the potential factors of skin cancer. Cyclin D1 is a serious gene included in controlling the development through the G1 phase of the cell cycle. Ochratoxin A (OTA) is a naturally existing mycotoxin which majorly occurs in food like grains. It is responsible for producing the splitting of single-strand DNA and is identified to be cancer-causing. It is established as a critical risk factor towards reproductive health in both males and females. Methodology. A single dose of ochratoxin A was used for topical application for assessment of skin tumor promotion activity, hyperplasia, ornithine decarboxylase activity, and expression of cyclin D1 and COX-2 in mouse skin. Enhancement in the synthesis of DNA, activation of the epidermal growth factor receptor, and overexpression of cyclin D1 and COX-2 were noted. Primary murine keratinocyte cell culture was cultured with Waymouth’s medium. Western blot analysis and real-time polymerase chain reaction (RT-PCR) were used to detect the expression of cyclin D1 and COX-2. Chromatin immunoprecipitation (ChIP) assays were used to the association between AP-1 transcription and nuclear factor-kappaB (NF-κB) with COX-2 and cyclin D1 promoters. Results. The results found that cyclin D1 and COX-2 were responsible for stimulating OTA-induced PMK proliferation and hyperplasia. Implications. EGFR-mediated pathways were also responsible for tumor promotion due to OTA.

2006 ◽  
Vol 38 (3) ◽  
pp. 152 ◽  
Author(s):  
Kyung-Soo Chun ◽  
Joydeb Kumar Kundu ◽  
Kwang-Kyun Park ◽  
Won-Yoon Chung ◽  
Young-Joon Surh

1990 ◽  
Vol 11 (10) ◽  
pp. 1795-1801 ◽  
Author(s):  
Terrence J. Monks ◽  
Susan E. Walker ◽  
Linda M. Flynn ◽  
Claudio J. Conti ◽  
John DiGiovanni

1999 ◽  
Vol 112 (20) ◽  
pp. 3497-3506
Author(s):  
H.Q. Wang ◽  
R.C. Smart

Protein kinase Calpha (PKCalpha) is one of six PKC isoforms expressed in keratinocytes of mouse epidermis. To gain an understanding of the role of epidermal PKCalpha, we have localized its expression to specific cells of normal mouse skin and examined the effect of keratin 5 (K5) promoter directed expression of PKCalpha in transgenic mice. In normal mouse skin, PKCalpha was extensively expressed in the outer root sheath (ORS) keratinocytes of the anagen hair follicle and weakly expressed in keratinocytes of interfollicular epidermis. K5-targeted expression of PKCalpha to epidermal basal keratinocytes and follicular ORS keratinocytes resulted in a tenfold increase in epidermal PKCalpha. K5-PKCalpha mice exhibited no abnormalities in keratinocyte growth and differentiation in the epidermis. However, a single topical treatment with the PKC activator, 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a striking inflammatory response characterized by edema and extensive epidermal infiltration of neutrophils that formed intraepidermal microabscesses in the epidermis. Compared to TPA-treated wild-type mice, the epidermis of TPA-treated K5-PKCalpha mice displayed increased expression of cyclooxygenase-2 (COX-2), the neutrophil chemotactic factor macrophage inflammatory protein-2 (MIP-2) mRNA and the proinflammatory cytokine TNFalpha mRNA but not IL-6 or IL-1alpha mRNA. To determine if K5-PKCalpha mice display an altered response to TPA-promotion, 7, 12-dimethylbenz[a]anthracene-initiated K5-PKCalpha mice and wild-type mice were promoted with TPA. No differences in papilloma incidence or multiplicity were observed between K5-PKCalpha mice and wild-type littermates. These results demonstrate that the overexpression of PKCalpha in epidermis increases the expression of specific proinflammatory mediators and induces cutaneous inflammation but has little to no effect on epidermal differentiation, proliferation or TPA tumor promotion.


1993 ◽  
Vol 9 (4) ◽  
pp. 623-630 ◽  
Author(s):  
Mark A. Nelson ◽  
Frederick E. Domann ◽  
G. Tim Bowden ◽  
Stephen B. Hooser ◽  
Quintus Fernando ◽  
...  

The recent discovery that fullerenes (C60) can be produced in macroscopic quantities has sparked much interest in the chemistry of this unusual molecule. Concerns have also arose about the potential carcinogenic effects of this molecule. We have addressed the potential acute and subchronic toxic effects of fullerenes applied in benzene on the mouse skin. The acute toxic effects measured in this study included epidermal DNA synthesis and the induction of ornithine decarboxylase activity in the epidermis. At the topical dose of fullerenes used in these studies (i.e., 200 ug), we found no effect on either DNA synthesis or ornithine decarboxylase activity over a 72 hour time course after treatment. The subchronic effects of the fullerenes as a mouse skin tumor promoter was assessed by repeatedly applying the chemical to the skin after initiation with the polycyclic aromatic hydrocarbon, 7,12-dimethlybenz-anthracene (DMBA). Repeated administration of the fullerenes for up to 24 weeks post-initiation did not result in either benign or malignant skin tumor formation, whereas promotion with the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in the formation of benign skin tumors. Our data indicate that fullerenes applied in benzene at a likely industrial exposure level do not cause acute toxic effects on the mouse skin epidermis.


1992 ◽  
Vol 13 (10) ◽  
pp. 1925-1928 ◽  
Author(s):  
Laura L. Pashko ◽  
Arthur G. Schwartz

2000 ◽  
Vol 29 (3) ◽  
pp. 134-142 ◽  
Author(s):  
Philippe Thuillier ◽  
Gaby J. Anchiraico ◽  
Kwangok P. Nickel ◽  
Regina E. Maldve ◽  
Irma Gimenez-Conti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document