scholarly journals Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongling Yu ◽  
Huiling Zhang ◽  
Jiaqi Yi ◽  
Yongzhen Fang ◽  
Nanxing Wu

To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in g r in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.

2009 ◽  
Vol 97 (7) ◽  
Author(s):  
Magali Duvail ◽  
Paola D'Angelo ◽  
Marie-Pierre Gaigeot ◽  
Pierre Vitorge ◽  
Riccardo Spezia

AbstractIn this paper we show how molecular dynamics simulation can improve comprehension of structure and dynamics of water solvent around heavy cations. In particular, metal-water radial distribution function obtained from molecular dynamics can be used into EXAFS equation to improve the experimental signal fitting. Here we show results on structure and dynamics of Co


2008 ◽  
Vol 22 (17) ◽  
pp. 2781-2785 ◽  
Author(s):  
A. SARKAR ◽  
P. BARAT ◽  
P. MUKHERJEE

Molecular dynamics simulation study based on the EAM potential is carried out to investigate the effect of pressure on the rapid solidification of Aluminum. The radial distribution function is used to characterize the structure of the Al solidified under different pressures. It is indicated that a high pressure leads to strong crystallization tendency during cooling.


2011 ◽  
Vol 399-401 ◽  
pp. 751-759
Author(s):  
Jian Liu ◽  
Jin Xing Kong ◽  
Da Jiang Lei ◽  
Ya Lin Zhang ◽  
Hai Feng Li ◽  
...  

The nanoindentation of diamond crystal [100] surface is studied in this paper, by using molecular dynamics simulation method and Tersoff potential. The total number of atoms in the model is exceed to 2,000,000. The crystal structure changes and the bond formations of C atoms under pressure load are analyzed. A light load causes lattice distortion but cannot cause bond breaking or hybridization transition from sp3 to sp2. When the load is enough heavy, the energy be imposed on the workpiece will beyond the range of lattice distortion, which can cause bond break and hybridization transition from sp3 to sp2.


2009 ◽  
Vol 283-286 ◽  
pp. 149-154 ◽  
Author(s):  
E.A. Pastukhov ◽  
N.I. Sidorov ◽  
Valery A. Polukhin ◽  
V.P. Chentsov

Molecular dynamics simulation was used for investigating hydrogen migration in Pd-Si alloy at a temperature Т = 300 K. The strong affect of hydrogen dynamics and its defects creation to structure of palladium matrix is stated. The partial radial distribution function calculation for silicon specifies a preferable arrangement of silicon atoms relative to each other in the second coordination sphere. Model calculations have shown that not only silicon atoms can affect hydrogen mobility. Hydrogen itself also can significantly change the diffusion of the other components in the alloy.


Author(s):  
Pham Tri Dung ◽  
Nguyen Quang Bau ◽  
Nguyen Thi Thu Ha ◽  
Mai Thi Lan

The paper presents research results of structure of the Mullite system (3Al2O3.2SiO2) by  Molecular Dynamics simulation (MDs) using the Born–Mayer– Huggins pair interaction and periodic boundary conditions. The simulation is performed with model of 5250 atoms at different pressure and at 3500 K temperature. The structural properties of the system have been clarified through analysis of the pair radial distribution function, the distribution of coordination number, the bond angle and the link between adjacent TOx units.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Julia A. Baimova ◽  
Qin Fan ◽  
Liangcai Zeng ◽  
Zhigang Wang ◽  
Sergey V. Dmitriev ◽  
...  

For carbon nanotubes of sufficiently large diameter at sufficiently low temperature, due to the action of the van der Waals forces, the ground state is a bilayer graphene with closed edges, the so-called collapsed configuration. Molecular dynamics simulation of collapsed carbon nanotubes is performed. The effect of length, diameter, and chirality of the nanotubes on their properties is investigated. It is shown that collapsed nanotubes after relaxation have rippled structure which is strongly dependent on the nanotube chirality. The structural properties are studied by calculating the radial distribution function and energy distribution along various regions in the collapsed carbon nanotubes.


2008 ◽  
Vol 1784 (7-8) ◽  
pp. 1059-1067 ◽  
Author(s):  
Koji Tomoo ◽  
Yasuhiro Mukai ◽  
Yasuko In ◽  
Hiroo Miyagawa ◽  
Kunihiro Kitamura ◽  
...  

Author(s):  
Aneet D. Narendra ◽  
Abhijit Mukherjee

Examination of metastable states of fluids provides important information pertinent to cavitation and homogeneous nucleation. Homogeneous nucleation, in particular, is an important topic of research. Molecular Dynamics simulation is a well-endorsed method to simulate metastabilitites, as they are limited to mesoscopic scales of length and time and this life-time is essentially zero on a laboratory time scale. In the present study, a molecular dynamics code has been used in conjunction with MOLDY to investigate phase change in a Lennard-Jones liquid. The Lennard-Jones atoms were subjected to different temperatures at various number densities and the pressure was recorded for each case. The appearance of a change of phase is characterized by the formation of clusters or formation of voids as described by the radial distribution function.


2000 ◽  
Vol 634 ◽  
Author(s):  
R. Tarumi ◽  
A. Ogura ◽  
M. Shimojo ◽  
K. Takashima ◽  
Y. Higo

ABSTRACTAn NTP ensemble molecular dynamics simulation was carried out to investigate the mechanism of nano-sized crystallization during plastic deformation in an amorphous metal. The atomic system used in this study was Ni single component. The total number of Ni atoms was 1372. The Morse type inter-atomic potential was employed. An amorphous model was prepared by a quenching process from the liquid state. Pure shear stresses were applied to the amorphous model at a temperature of 50 K. At applied stresses of less than 2.4GPa, a linear relation between shear stress and shear strain was observed. However, at an applied shear stress of 2.8 GPa, the amorphous model started to deform significantly until shear strain reached to 0.78. During this deformation process, phase transformation from amorphous into crystalline structure (fcc) was observed. Furthermore, an orientation relationship between shear directions and crystalline phase was obtained, that is, two shear directions are parallel to a (111) of the fcc structure. This crystallographic orientation relationship agreed well with our experimental result of Ni-P amorphous alloy. Mechanisms of phase transformation from amorphous into crystalline structure were discussed.


Sign in / Sign up

Export Citation Format

Share Document