What first principles molecular dynamics can tell us about EXAFS spectroscopy of radioactive heavy metal cations in water

2009 ◽  
Vol 97 (7) ◽  
Author(s):  
Magali Duvail ◽  
Paola D'Angelo ◽  
Marie-Pierre Gaigeot ◽  
Pierre Vitorge ◽  
Riccardo Spezia

AbstractIn this paper we show how molecular dynamics simulation can improve comprehension of structure and dynamics of water solvent around heavy cations. In particular, metal-water radial distribution function obtained from molecular dynamics can be used into EXAFS equation to improve the experimental signal fitting. Here we show results on structure and dynamics of Co

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongling Yu ◽  
Huiling Zhang ◽  
Jiaqi Yi ◽  
Yongzhen Fang ◽  
Nanxing Wu

To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in g r in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.


2008 ◽  
Vol 22 (17) ◽  
pp. 2781-2785 ◽  
Author(s):  
A. SARKAR ◽  
P. BARAT ◽  
P. MUKHERJEE

Molecular dynamics simulation study based on the EAM potential is carried out to investigate the effect of pressure on the rapid solidification of Aluminum. The radial distribution function is used to characterize the structure of the Al solidified under different pressures. It is indicated that a high pressure leads to strong crystallization tendency during cooling.


Sign in / Sign up

Export Citation Format

Share Document