scholarly journals Lateral Seismic Fragility Assessment of Cable-Stayed Bridge with Diamond-Shaped Concrete Pylons

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Zhang ◽  
Jianbin Lu ◽  
Zhengan Zhou ◽  
Xueyuan Yan ◽  
Li Xu ◽  
...  

The cable-stayed bridge with diamond-shaped pylons is one of the most popular bridges because of its obvious advantages such as aesthetical appearance and smaller foundation. However, the diamond-shaped pylons have both inward and outward inclinations, which may result in complicated seismic behavior when subjected to lateral earthquake excitations. To end this, the finite element model of a cable-stayed bridge with diamond concrete pylon is developed firstly. Four limit states and corresponding damage index are defined for each critical section. Finally, the lateral seismic fragility of the components and system of CSB was carried out. Based on the result of probabilistic estimation of lateral seismic responses, the order of the damage probability in all four damage states for each component of bridge is given. The fragility curves of bridge system on the lower bound and upper bound are studied. Moreover, the system fragility of the entire bridge is compared with that of each component.

2007 ◽  
Vol 23 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Hiram Badillo-Almaraz ◽  
Andrew S. Whittaker ◽  
Andrei M. Reinhorn

Full-scale dynamic testing of suspended ceiling systems was performed to obtain fragility data suitable for performance-based assessment and design. On the basis of the fragility data derived from testing, (1) the use of retainer clips improves the performance of ceiling systems in terms of loss of tiles, (2) including recycled cross tees in the suspension grid increases the vulnerability of the ceiling systems, (3) undersized (poorly fitting) tiles are substantially more vulnerable than properly fitted tiles, and (4) the use of compression posts improves the seismic performance of ceiling systems for the limit states of minor and moderate damage. Fragility curves are provided for four damage states.


2019 ◽  
Vol 9 (21) ◽  
pp. 4660
Author(s):  
Quang Huy Tran ◽  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Jin-Hee Ahn

While the container crane is an important part of daily port operations, it has received little attention in comparison with other infrastructures such as buildings and bridges. Crane collapses owing to earthquakes affect the operation of the port and indirectly impact the economy. This study proposes fragility analyses for various damage levels of a container crane, thus enabling the port owner and partners to better understand the seismic vulnerability presented by container cranes. A large number of nonlinear time-history analyses were applied for a three-dimensional (3D) finite element model to quantify the vulnerability of a Korean case-study container crane considering the uplift and derailment behavior. The uncertainty of the demand and capacity of the crane structures were also considered through random variables, i.e., the elastic modulus of members, ground motion profile, and intensity. The results analyzed in the case of the Korean container crane indicated the probability of exceeding the first uplift with or without derailment before the crane reached the structure’s limit states. This implies that under low seismic excitation, the crane may be derailed without any structural damage. However, when the crane reaches the minor damage state, this condition is always coupled with a certain probability of uplift with or without derailment. Furthermore, this study proposes fragility curves developed for different structural periods to enable port stakeholders to assess the risk of their container crane.


2006 ◽  
Vol 33 (4) ◽  
pp. 395-408 ◽  
Author(s):  
Bino B.S Huns ◽  
Gilbert Y Grondin ◽  
Robert G Driver

Despite the large database of test results for tension and shear block failure in gusset plates, the exact progression of the failure mechanism is not clear. Although current design equations predict the capacity of gusset plates fairly well, it is important for a design equation to not only predict the capacity reliably but also reflect the failure mode accurately. Recent experimental and numerical research has indicated that current design equations do not always predict the failure behaviour accurately. A finite element model was therefore developed to predict the sequence of events that leads to the tear-out of a block of material from a bolted gusset plate in tension. The model was developed to provide a useful tool for studying tension and shear block failure in gusset plates and other structural elements. This paper presents the development of the finite element model and procedure for prediction of tension and shear block failure in gusset plates. Making use of the finite element model, the database of test results is also expanded to include gusset plates with a larger number of transverse lines of bolts than what has been obtained experimentally. A reliability analysis is used to assess several design equations, including the equation adopted in CAN/CSA-S16-01 and a unified equation proposed recently for several types of bolted connections. From this work, a limit states design equation is proposed for gusset plates.Key words: gusset plate, limit states design, reliability, shear rupture, tension rupture, finite element analysis, failure criterion.


Author(s):  
Quang Huy Tran ◽  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Jin-Hee Ahn

While the container crane is an important part of daily port operations, it has received little attention compared with other infrastructures, such as buildings and bridges. Crane collapse due to earthquake affects the operation of the port, and indirectly impacts the economy. This study proposes fragility analyses for various damage levels of the container crane that allow the port owner and partners to better understand the seismic vulnerability presented by container cranes. A large quantity of nonlinear time history analyses was applied for a three-dimensional (3D) finite element model to quantify the vulnerability of the container crane in considering the uplift and derailment behavior. The uncertainty of demand and capacity of the crane structures were also considered through random variables, i.e. elastic modulus of members, ground motion profile, and intensity. The results analyzed in the case of a Korean container crane showed that the probability of exceeding the first uplift with or without derailment is shown before the crane reaches the structure’s limit states. This means that under low seismic excitation, the crane might be derailed without any structural damage. But when the crane reaches the minor damage state, it is always coupled with a certain probability of uplift with or without derailment. This study also proposes the fragility curves developed for different structural periods to enable port stakeholders to assess the risk of their container crane.


2020 ◽  
Vol 16 (1) ◽  
pp. 39-48
Author(s):  
Parham Bakhtiari ◽  
Khosro Bargi

AbstractThe assessment of the seismic behavior of the high-speed railway bridges is necessary because of the strategic essence of these structures. Evaluating and predicting damages of the bridges that originated by earthquakes with various intensities can provide useful information, which is very helpful in the management of the possible crises. One of the most useful mechanisms for estimating earthquake damages to these bridges is the development of fragility curves for them. Studies on the production of fragility curves on the high-speed railway bridges are limited. In this research, the fragility curve is plotted for two high-speed railway bridges with different pier heights. Due to the differences in the height of these bridges, a comparison of the performance of these structures is also shown. The model of the high-speed railway bridge was created for each model separately in the SeismoStruct software. The soil-structure interaction is also modeled as springs, and its effects are considered. Nonlinear models are also used to model concrete and steel materials. Then, the incremental dynamic analysis was performed under different ground motion records. By using the obtained data from the analysis, appropriate damage states were selected, and finally, the fragility curves were plotted for different performance limit states. The results showed that with increasing pier height, the damage index was raised and for a constant probability of exceedance, the taller pier is demanded a lower spectral acceleration to achieve a performance level.


Author(s):  
Jun-Qing Lei ◽  
Xian-Qing Zhang ◽  
Shu-Lun Guo ◽  
Zu-Wei Huang ◽  
Wu-Qin Wang

<p>This paper aims to explore the challenge of the design of over one-kilometer-long span road-rail cable-stayed bridge. Because of the large live load and the weight of the structure itself, it has important theoretical significance and engineering application value to study the design parameters of the long Road-Rail cable-stayed bridge with a main span of over 1000 m. The main content of this paper is to study the Steel Road-Rail Cable-stayed Bridge with a main span of 1200 m. The finite element model is established by large-scale analysis software to calculate the response of the structure under load. Based on the calculation results, the rationality of long-span cable-stayed bridge are preliminarily researched. Wind and seismic loads are not considered.</p>


Author(s):  
Konstantinos Bakalis ◽  
Dimitrios Vamvatsikos ◽  
Michalis Fragiadakis

A seismic fragility assessment procedure is developed for atmospheric steel liquid storage tanks. Appropriate system and component-level damage states are defined by identifying the failure modes that may occur during a strong ground motion. Special attention is paid to the elephant’s foot buckling failure mode, where the estimation of the associated capacity and demand requires thorough consideration within a probabilistic framework. A novel damage state is introduced to existing procedures with respect to the uncontrollable loss of containment scenario. Fragility curves are estimated by introducing both aleatory and epistemic sources of uncertainty, thus providing a comprehensive methodology for the seismic risk assessment of liquid storage tanks. The importance of dynamic buckling is acknowledged and the issue of non-sequential damage states is finally revealed.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Panpan Zhai ◽  
Peng Zhao ◽  
Yang Lu ◽  
Chenying Ye ◽  
Feng Xiong

Most conventional seismic fragility analyses of RC buildings usually ignore or greatly simplify the soil-structure interaction (SSI), and the maximum interstory drift ratio (MIDR) is often adopted to establish seismic fragility curves. In this work, an eight-story RC building was designed to study the influence of the SSI on the seismic fragility of RC buildings. Three double-parameter damage models (DPDMs) were considered for the fragility assessment: the Park–Ang model, the Niu model, and the Lu–Wang model. Results show that considering SSI induces a higher fragility than that of the fixed model and that employing the DPDMs for the fragility analysis provides more reasonable results than those evaluated using the MIDR damage index.


2017 ◽  
Vol 33 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Xin Chu ◽  
James M. Ricles ◽  
Shamim N. Pakzad

This paper presents the seismic fragility assessment of the Smithsonian Institute Museum Support Center (MSC), which sustained appreciable damage during the 2011 Virginia earthquake. A three-dimensional (3-D) finite element model (FEM) for the building was created and validated using measured dynamic characteristics determined from field vibration test data. Two suites of bidirectional ground motions at different hazard levels were applied to the FEM to generate fragility curves for structural as well as nonstructural (storage cabinets) damage. The effect of brace yielding strength on structural and nonstructural damage is also investigated to provide recommendations for future retrofit. The fragility curves show that the spectral acceleration to cause structural damage to the building is not high. Due to low seismicity, however, the probability for the structure to be damaged at the design basis earthquake is small. Nevertheless, the probability for nonstructural damage is considerable, which is an important issue related to the seismic performance of the building.


2017 ◽  
Vol 2017 ◽  
pp. 1-17
Author(s):  
Masoud Biglarkhani ◽  
Keyvan Sadeghi

Incremental explosive analysis (IEA) is addressed as an applicable method for performance-based assessment of stiffened and unstiffened cylindrical shells subjected to underwater explosion (UNDEX) loading. In fact, this method is inspired by the incremental dynamic analysis (IDA) which is a known parametric analysis method in the field of earthquake engineering. This paper aims to introduce the application of IEA approach in UNDEX in order to estimate different limit states and deterministic assessment of cylindrical shells, considering the uncertainty of loading conditions. The local, bay, and general buckling modes are defined as limit states for performance calculation. Different standoff distances and depth parameters combining several loading conditions are considered. The explosive loading intensity is specified and scaled in several levels to force the structure through the entire range of its behavior. The results are plotted in terms of a damage measure (DM) versus selected intensity measure (IM). The statistical treatment of the obtained multi-IEA curves is performed to summarize the results in a predictive mode. Finally, the fragility curves as damage probability indicators of shells in UNDEX loading are extracted. Results show that the IEA is a promising method for performance-based assessment of cylindrical shells subjected to UNDEX loading.


Sign in / Sign up

Export Citation Format

Share Document