scholarly journals Stable Median Centre Clustering for Unsupervised Domain Adaptation Person Re-Identification

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jifeng Guo ◽  
Wenbo Sun ◽  
Zhiqi Pang ◽  
Yuxiao Fei ◽  
Yu Chen

The current unsupervised domain adaptation person re-identification (re-ID) method aims to solve the domain shift problem and applies prior knowledge learned from labelled data in the source domain to unlabelled data in the target domain for person re-ID. At present, the unsupervised domain adaptation person re-ID method based on pseudolabels has obtained state-of-the-art performance. This method obtains pseudolabels via a clustering algorithm and uses these pseudolabels to optimize a CNN model. Although it achieves optimal performance, the model cannot be further optimized due to the existence of noisy labels in the clustering process. In this paper, we propose a stable median centre clustering (SMCC) for the unsupervised domain adaptation person re-ID method. SMCC adaptively mines credible samples for optimization purposes and reduces the impact of label noise and outliers on training to improve the performance of the resulting model. In particular, we use the intracluster distance confidence measure of the sample and its K-reciprocal nearest neighbour cluster proportion in the clustering process to select credible samples and assign different weights according to the intracluster sample distance confidence of samples to measure the distances between different clusters, thereby making the clustering results more robust. The experiments show that our SMCC method can select credible and stable samples for training and improve performance of the unsupervised domain adaptation model. Our code is available at https://github.com/sunburst792/SMCC-method/tree/master.

Author(s):  
Guangbin Wu ◽  
David Zhang ◽  
Weishan Chen ◽  
Wangmeng Zuo ◽  
Zhuang Xia

Domain adaptation aims to generalize the classification model from a source domain to a different but related target domain. Recent studies have revealed the benefit of deep convolutional features trained on a large dataset (e.g. ImageNet) in alleviating domain discrepancy. However, literatures show that the transferability of features decreases as (i) the difference between the source and target domains increases, or (ii) the layers are toward the top layers. Therefore, even with deep features, domain adaptation remains necessary. In this paper, we propose a novel unsupervised domain adaptation (UDA) model for deep neural networks, which is learned with the labeled source samples and the unlabeled target ones simultaneously. For target samples without labels, pseudo labels are assigned to them according to their maximum classification scores during training of the UDA model. However, due to the domain discrepancy, label noise generally is inevitable, which degrades the performance of the domain adaptation model. Thus, to effectively utilize the target samples, three specific robust deep softmax regression (RDSR) functions are performed for them with high, medium and low classification confidence respectively. Extensive experiments show that our method yields the state-of-the-art results, demonstrating the effectiveness of the robust deep softmax regression classifier in UDA.


2020 ◽  
Vol 34 (04) ◽  
pp. 6615-6622 ◽  
Author(s):  
Guanglei Yang ◽  
Haifeng Xia ◽  
Mingli Ding ◽  
Zhengming Ding

Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information. The conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure. To balance the mitigation of domain gap and the preservation of the inherent structure, we propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains. Specifically, two cross-domain generators are employed to synthesize one domain conditioned on the other. The performance of our proposed method can be further enhanced by the consistent classifiers and the cross-domain alignment constraints. We also design two classifiers which are jointly optimized to maximize the consistency on target sample prediction. Extensive experiments verify that our proposed model outperforms the state-of-the-art on standard cross domain visual benchmarks.


2021 ◽  
pp. 1-7
Author(s):  
Rong Chen ◽  
Chongguang Ren

Domain adaptation aims to solve the problems of lacking labels. Most existing works of domain adaptation mainly focus on aligning the feature distributions between the source and target domain. However, in the field of Natural Language Processing, some of the words in different domains convey different sentiment. Thus not all features of the source domain should be transferred, and it would cause negative transfer when aligning the untransferable features. To address this issue, we propose a Correlation Alignment with Attention mechanism for unsupervised Domain Adaptation (CAADA) model. In the model, an attention mechanism is introduced into the transfer process for domain adaptation, which can capture the positively transferable features in source and target domain. Moreover, the CORrelation ALignment (CORAL) loss is utilized to minimize the domain discrepancy by aligning the second-order statistics of the positively transferable features extracted by the attention mechanism. Extensive experiments on the Amazon review dataset demonstrate the effectiveness of CAADA method.


2021 ◽  
Author(s):  
Jiahao Fan ◽  
Hangyu Zhu ◽  
Xinyu Jiang ◽  
Long Meng ◽  
Cong Fu ◽  
...  

Deep sleep staging networks have reached top performance on large-scale datasets. However, these models perform poorer when training and testing on small sleep cohorts due to data inefficiency. Transferring well-trained models from large-scale datasets (source domain) to small sleep cohorts (target domain) is a promising solution but still remains challenging due to the domain-shift issue. In this work, an unsupervised domain adaptation approach, domain statistics alignment (DSA), is developed to bridge the gap between the data distribution of source and target domains. DSA adapts the source models on the target domain by modulating the domain-specific statistics of deep features stored in the Batch Normalization (BN) layers. Furthermore, we have extended DSA by introducing cross-domain statistics in each BN layer to perform DSA adaptively (AdaDSA). The proposed methods merely need the well-trained source model without access to the source data, which may be proprietary and inaccessible. DSA and AdaDSA are universally applicable to various deep sleep staging networks that have BN layers. We have validated the proposed methods by extensive experiments on two state-of-the-art deep sleep staging networks, DeepSleepNet+ and U-time. The performance was evaluated by conducting various transfer tasks on six sleep databases, including two large-scale databases, MASS and SHHS, as the source domain, four small sleep databases as the target domain. Thereinto, clinical sleep records acquired in Huashan Hospital, Shanghai, were used. The results show that both DSA and AdaDSA could significantly improve the performance of source models on target domains, providing novel insights into the domain generalization problem in sleep staging tasks.<br>


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Baoying Chen ◽  
Shunquan Tan

Recently, various Deepfake detection methods have been proposed, and most of them are based on convolutional neural networks (CNNs). These detection methods suffer from overfitting on the source dataset and do not perform well on cross-domain datasets which have different distributions from the source dataset. To address these limitations, a new method named FeatureTransfer is proposed in this paper, which is a two-stage Deepfake detection method combining with transfer learning. Firstly, The CNN model pretrained on a third-party large-scale Deepfake dataset can be used to extract the more transferable feature vectors of Deepfake videos in the source and target domains. Secondly, these feature vectors are fed into the domain-adversarial neural network based on backpropagation (BP-DANN) for unsupervised domain adaptive training, where the videos in the source domain have real or fake labels, while the videos in the target domain are unlabelled. The experimental results indicate that the proposed method FeatureTransfer can effectively solve the overfitting problem in Deepfake detection and greatly improve the performance of cross-dataset evaluation.


2020 ◽  
Vol 34 (05) ◽  
pp. 7618-7625
Author(s):  
Yong Dai ◽  
Jian Liu ◽  
Xiancong Ren ◽  
Zenglin Xu

Multi-source unsupervised domain adaptation (MS-UDA) for sentiment analysis (SA) aims to leverage useful information in multiple source domains to help do SA in an unlabeled target domain that has no supervised information. Existing algorithms of MS-UDA either only exploit the shared features, i.e., the domain-invariant information, or based on some weak assumption in NLP, e.g., smoothness assumption. To avoid these problems, we propose two transfer learning frameworks based on the multi-source domain adaptation methodology for SA by combining the source hypotheses to derive a good target hypothesis. The key feature of the first framework is a novel Weighting Scheme based Unsupervised Domain Adaptation framework ((WS-UDA), which combine the source classifiers to acquire pseudo labels for target instances directly. While the second framework is a Two-Stage Training based Unsupervised Domain Adaptation framework (2ST-UDA), which further exploits these pseudo labels to train a target private extractor. Importantly, the weights assigned to each source classifier are based on the relations between target instances and source domains, which measured by a discriminator through the adversarial training. Furthermore, through the same discriminator, we also fulfill the separation of shared features and private features.Experimental results on two SA datasets demonstrate the promising performance of our frameworks, which outperforms unsupervised state-of-the-art competitors.


Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 96 ◽  
Author(s):  
Imad Eddine Ibrahim Bekkouch ◽  
Youssef Youssry ◽  
Rustam Gafarov ◽  
Adil Khan ◽  
Asad Masood Khattak

Domain adaptation is a sub-field of transfer learning that aims at bridging the dissimilarity gap between different domains by transferring and re-using the knowledge obtained in the source domain to the target domain. Many methods have been proposed to resolve this problem, using techniques such as generative adversarial networks (GAN), but the complexity of such methods makes it hard to use them in different problems, as fine-tuning such networks is usually a time-consuming task. In this paper, we propose a method for unsupervised domain adaptation that is both simple and effective. Our model (referred to as TripNet) harnesses the idea of a discriminator and Linear Discriminant Analysis (LDA) to push the encoder to generate domain-invariant features that are category-informative. At the same time, pseudo-labelling is used for the target data to train the classifier and to bring the same classes from both domains together. We evaluate TripNet against several existing, state-of-the-art methods on three image classification tasks: Digit classification (MNIST, SVHN, and USPC datasets), object recognition (Office31 dataset), and traffic sign recognition (GTSRB and Synthetic Signs datasets). Our experimental results demonstrate that (i) TripNet beats almost all existing methods (having a similar simple model like it) on all of these tasks; and (ii) for models that are significantly more complex (or hard to train) than TripNet, it even beats their performance in some cases. Hence, the results confirm the effectiveness of using TripNet for unsupervised domain adaptation in image classification.


2020 ◽  
Vol 34 (05) ◽  
pp. 7830-7838 ◽  
Author(s):  
Han Guo ◽  
Ramakanth Pasunuru ◽  
Mohit Bansal

Domain adaptation performance of a learning algorithm on a target domain is a function of its source domain error and a divergence measure between the data distribution of these two domains. We present a study of various distance-based measures in the context of NLP tasks, that characterize the dissimilarity between domains based on sample estimates. We first conduct analysis experiments to show which of these distance measures can best differentiate samples from same versus different domains, and are correlated with empirical results. Next, we develop a DistanceNet model which uses these distance measures, or a mixture of these distance measures, as an additional loss function to be minimized jointly with the task's loss function, so as to achieve better unsupervised domain adaptation. Finally, we extend this model to a novel DistanceNet-Bandit model, which employs a multi-armed bandit controller to dynamically switch between multiple source domains and allow the model to learn an optimal trajectory and mixture of domains for transfer to the low-resource target domain. We conduct experiments on popular sentiment analysis datasets with several diverse domains and show that our DistanceNet model, as well as its dynamic bandit variant, can outperform competitive baselines in the context of unsupervised domain adaptation.


2020 ◽  
Vol 34 (04) ◽  
pp. 6243-6250 ◽  
Author(s):  
Qian Wang ◽  
Toby Breckon

Unsupervised domain adaptation aims to address the problem of classifying unlabeled samples from the target domain whilst labeled samples are only available from the source domain and the data distributions are different in these two domains. As a result, classifiers trained from labeled samples in the source domain suffer from significant performance drop when directly applied to the samples from the target domain. To address this issue, different approaches have been proposed to learn domain-invariant features or domain-specific classifiers. In either case, the lack of labeled samples in the target domain can be an issue which is usually overcome by pseudo-labeling. Inaccurate pseudo-labeling, however, could result in catastrophic error accumulation during learning. In this paper, we propose a novel selective pseudo-labeling strategy based on structured prediction. The idea of structured prediction is inspired by the fact that samples in the target domain are well clustered within the deep feature space so that unsupervised clustering analysis can be used to facilitate accurate pseudo-labeling. Experimental results on four datasets (i.e. Office-Caltech, Office31, ImageCLEF-DA and Office-Home) validate our approach outperforms contemporary state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document