scholarly journals Bi-Directional Generation for Unsupervised Domain Adaptation

2020 ◽  
Vol 34 (04) ◽  
pp. 6615-6622 ◽  
Author(s):  
Guanglei Yang ◽  
Haifeng Xia ◽  
Mingli Ding ◽  
Zhengming Ding

Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information. The conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure. To balance the mitigation of domain gap and the preservation of the inherent structure, we propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains. Specifically, two cross-domain generators are employed to synthesize one domain conditioned on the other. The performance of our proposed method can be further enhanced by the consistent classifiers and the cross-domain alignment constraints. We also design two classifiers which are jointly optimized to maximize the consistency on target sample prediction. Extensive experiments verify that our proposed model outperforms the state-of-the-art on standard cross domain visual benchmarks.

Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Baoying Chen ◽  
Shunquan Tan

Recently, various Deepfake detection methods have been proposed, and most of them are based on convolutional neural networks (CNNs). These detection methods suffer from overfitting on the source dataset and do not perform well on cross-domain datasets which have different distributions from the source dataset. To address these limitations, a new method named FeatureTransfer is proposed in this paper, which is a two-stage Deepfake detection method combining with transfer learning. Firstly, The CNN model pretrained on a third-party large-scale Deepfake dataset can be used to extract the more transferable feature vectors of Deepfake videos in the source and target domains. Secondly, these feature vectors are fed into the domain-adversarial neural network based on backpropagation (BP-DANN) for unsupervised domain adaptive training, where the videos in the source domain have real or fake labels, while the videos in the target domain are unlabelled. The experimental results indicate that the proposed method FeatureTransfer can effectively solve the overfitting problem in Deepfake detection and greatly improve the performance of cross-dataset evaluation.


2020 ◽  
Vol 34 (05) ◽  
pp. 7618-7625
Author(s):  
Yong Dai ◽  
Jian Liu ◽  
Xiancong Ren ◽  
Zenglin Xu

Multi-source unsupervised domain adaptation (MS-UDA) for sentiment analysis (SA) aims to leverage useful information in multiple source domains to help do SA in an unlabeled target domain that has no supervised information. Existing algorithms of MS-UDA either only exploit the shared features, i.e., the domain-invariant information, or based on some weak assumption in NLP, e.g., smoothness assumption. To avoid these problems, we propose two transfer learning frameworks based on the multi-source domain adaptation methodology for SA by combining the source hypotheses to derive a good target hypothesis. The key feature of the first framework is a novel Weighting Scheme based Unsupervised Domain Adaptation framework ((WS-UDA), which combine the source classifiers to acquire pseudo labels for target instances directly. While the second framework is a Two-Stage Training based Unsupervised Domain Adaptation framework (2ST-UDA), which further exploits these pseudo labels to train a target private extractor. Importantly, the weights assigned to each source classifier are based on the relations between target instances and source domains, which measured by a discriminator through the adversarial training. Furthermore, through the same discriminator, we also fulfill the separation of shared features and private features.Experimental results on two SA datasets demonstrate the promising performance of our frameworks, which outperforms unsupervised state-of-the-art competitors.


2016 ◽  
Vol 55 ◽  
pp. 131-163 ◽  
Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a "target'' domain when the only available training data belongs to a different "source'' domain. In this paper we present the Distributional Correspondence Indexing (DCI) method for domain adaptation in sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. Term correspondence is quantified by means of a distributional correspondence function (DCF). We propose a number of efficient DCFs that are motivated by the distributional hypothesis, i.e., the hypothesis according to which terms with similar meaning tend to have similar distributions in text. Experiments show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification. DCI also brings about a significantly reduced computational cost, and requires a smaller amount of human intervention. As a final contribution, we discuss a more challenging formulation of the domain adaptation problem, in which both the cross-domain and cross-lingual dimensions are tackled simultaneously.


Author(s):  
Pin Jiang ◽  
Aming Wu ◽  
Yahong Han ◽  
Yunfeng Shao ◽  
Meiyu Qi ◽  
...  

Semi-supervised domain adaptation (SSDA) is a novel branch of machine learning that scarce labeled target examples are available, compared with unsupervised domain adaptation. To make effective use of these additional data so as to bridge the domain gap, one possible way is to generate adversarial examples, which are images with additional perturbations, between the two domains and fill the domain gap. Adversarial training has been proven to be a powerful method for this purpose. However, the traditional adversarial training adds noises in arbitrary directions, which is inefficient to migrate between domains, or generate directional noises from the source to target domain and reverse. In this work, we devise a general bidirectional adversarial training method and employ gradient to guide adversarial examples across the domain gap, i.e., the Adaptive Adversarial Training (AAT) for source to target domain and Entropy-penalized Virtual Adversarial Training (E-VAT) for target to source domain. Particularly, we devise a Bidirectional Adversarial Training (BiAT) network to perform diverse adversarial trainings jointly. We evaluate the effectiveness of BiAT on three benchmark datasets and experimental results demonstrate the proposed method achieves the state-of-the-art.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jifeng Guo ◽  
Wenbo Sun ◽  
Zhiqi Pang ◽  
Yuxiao Fei ◽  
Yu Chen

The current unsupervised domain adaptation person re-identification (re-ID) method aims to solve the domain shift problem and applies prior knowledge learned from labelled data in the source domain to unlabelled data in the target domain for person re-ID. At present, the unsupervised domain adaptation person re-ID method based on pseudolabels has obtained state-of-the-art performance. This method obtains pseudolabels via a clustering algorithm and uses these pseudolabels to optimize a CNN model. Although it achieves optimal performance, the model cannot be further optimized due to the existence of noisy labels in the clustering process. In this paper, we propose a stable median centre clustering (SMCC) for the unsupervised domain adaptation person re-ID method. SMCC adaptively mines credible samples for optimization purposes and reduces the impact of label noise and outliers on training to improve the performance of the resulting model. In particular, we use the intracluster distance confidence measure of the sample and its K-reciprocal nearest neighbour cluster proportion in the clustering process to select credible samples and assign different weights according to the intracluster sample distance confidence of samples to measure the distances between different clusters, thereby making the clustering results more robust. The experiments show that our SMCC method can select credible and stable samples for training and improve performance of the unsupervised domain adaptation model. Our code is available at https://github.com/sunburst792/SMCC-method/tree/master.


Author(s):  
Guangbin Wu ◽  
David Zhang ◽  
Weishan Chen ◽  
Wangmeng Zuo ◽  
Zhuang Xia

Domain adaptation aims to generalize the classification model from a source domain to a different but related target domain. Recent studies have revealed the benefit of deep convolutional features trained on a large dataset (e.g. ImageNet) in alleviating domain discrepancy. However, literatures show that the transferability of features decreases as (i) the difference between the source and target domains increases, or (ii) the layers are toward the top layers. Therefore, even with deep features, domain adaptation remains necessary. In this paper, we propose a novel unsupervised domain adaptation (UDA) model for deep neural networks, which is learned with the labeled source samples and the unlabeled target ones simultaneously. For target samples without labels, pseudo labels are assigned to them according to their maximum classification scores during training of the UDA model. However, due to the domain discrepancy, label noise generally is inevitable, which degrades the performance of the domain adaptation model. Thus, to effectively utilize the target samples, three specific robust deep softmax regression (RDSR) functions are performed for them with high, medium and low classification confidence respectively. Extensive experiments show that our method yields the state-of-the-art results, demonstrating the effectiveness of the robust deep softmax regression classifier in UDA.


2021 ◽  
Author(s):  
Zhimeng Yang ◽  
Zirui Wu ◽  
Ming Zeng ◽  
Yazhou Ren ◽  
Xiaorong Pu ◽  
...  

<div>By transferring knowledge from a source domain, the performance of deep clustering on an unlabeled target domain can be improved. When achieving this, traditional approaches make the assumption that adequate amount of labeled data is available in a source domain. However, this assumption is usually unrealistic in practice. The source domain should be carefully selected to share some characteristics with the target domain, and it can not be guaranteed that rich labeled samples are always available in the selected source domain.</div><div>We propose a novel framework to improve deep clustering by transferring knowledge from a source domain without any labeled data. To select reliable instances in the source domain for transferring, we propose a novel adaptive threshold algorithm to select low entropy instances. To transfer important features of the selected instances, we propose a feature-level domain adaptation network (FeatureDA) which cancels unstable generation process. With extensive experiments, we validate that our method effectively improves deep clustering, without using any labeled data in the source domain. Besides, without using any labeled data in the source domain, our method achieves competitive results, compared to the state-of-the-art methods using labeled data in the source domain.</div>


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5868 ◽  
Author(s):  
Chao Han ◽  
Deyun Zhou ◽  
Zhen Yang ◽  
Yu Xie ◽  
Kai Zhang

Distribution mismatch caused by various resolutions, backgrounds, etc. can be easily found in multi-sensor systems. Domain adaptation attempts to reduce such domain discrepancy by means of different measurements, e.g., maximum mean discrepancy (MMD). Despite their success, such methods often fail to guarantee the separability of learned representation. To tackle this issue, we put forward a novel approach to jointly learn both domain-shared and discriminative representations. Specifically, we model the feature discrimination explicitly for two domains. Alternating discriminant optimization is proposed to obtain discriminative features with an l2 constraint in labeled source domain and sparse filtering is introduced to capture the intrinsic structures exists in the unlabeled target domain. Finally, they are integrated in a unified framework along with MMD to align domains. Extensive experiments compared with state-of-the-art methods verify the effectiveness of our method on cross-domain tasks.


Sign in / Sign up

Export Citation Format

Share Document