scholarly journals Research and Implementation of the Text Matching Algorithm in the Field of Housing Law and Policy Based on Deep Learning

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yin Xu ◽  
Hong Ma

Machine learning enables machines to learn rules from a large amount of data input from the outside world through algorithms, so as to identify and judge. It is the main task of the government to further emphasize the importance of improving the housing security mechanism, expand the proportion of affordable housing, increase financial investment, improve the construction quality of affordable housing, and ensure fair distribution. It can be seen that the legal system of housing security is essentially a system to solve the social problems brought by housing marketization, and it is an important part of the whole national housing system. More and more attention has been paid to solving the housing difficulties of low- and middle-income people and establishing a housing security legal system suitable for China’s national conditions and development stage. Aiming at the deep learning problem, a text matching algorithm suitable for the field of housing law and policy is proposed. Classifier based on matching algorithm is a promising classification technology. The research on the legal system of housing security is in the exploratory stage, involving various theoretical and practical research studies. Compare the improved depth learning algorithm with the general algorithm, so as to clearly understand the advantages and disadvantages of the improved depth learning algorithm and depth learning algorithm. This paper introduces the practical application of the deep learning model and fast learning algorithm in detail. Creatively put forward to transform it into an independent public law basis or into an independent savings system.

Author(s):  
Dominic A. Neu ◽  
Johannes Lahann ◽  
Peter Fettke

AbstractProcess mining enables the reconstruction and evaluation of business processes based on digital traces in IT systems. An increasingly important technique in this context is process prediction. Given a sequence of events of an ongoing trace, process prediction allows forecasting upcoming events or performance measurements. In recent years, multiple process prediction approaches have been proposed, applying different data processing schemes and prediction algorithms. This study focuses on deep learning algorithms since they seem to outperform their machine learning alternatives consistently. Whilst having a common learning algorithm, they use different data preprocessing techniques, implement a variety of network topologies and focus on various goals such as outcome prediction, time prediction or control-flow prediction. Additionally, the set of log-data, evaluation metrics and baselines used by the authors diverge, making the results hard to compare. This paper attempts to synthesise the advantages and disadvantages of the procedural decisions in these approaches by conducting a systematic literature review.


Author(s):  
Dan Luo

Background: As known that the semi-supervised algorithm is a classical algorithm in semi-supervised learning algorithm. Methods: In the paper, it proposed improved cooperative semi-supervised learning algorithm, and the algorithm process is presented in detailed, and it is adopted to predict unlabeled electronic components image. Results: In the experiments of classification and recognition of electronic components, it show that through the method the accuracy the proposed algorithm in electron device image recognition can be significantly improved, the improved algorithm can be used in the actual recognition process . Conclusion: With the continuous development of science and technology, machine vision and deep learning will play a more important role in people's life in the future. The subject research based on the identification of the number of components is bound to develop towards the direction of high precision and multi-dimension, which will greatly improve the production efficiency of electronic components industry.


Author(s):  
A John. ◽  
D. Praveen Dominic ◽  
M. Adimoolam ◽  
N. M. Balamurugan

Background:: Predictive analytics has a multiplicity of statistical schemes from predictive modelling, data mining, machine learning. It scrutinizes present and chronological data to make predictions about expectations or if not unexplained measures. Most predictive models are used for business analytics to overcome loses and profit gaining. Predictive analytics is used to exploit the pattern in old and historical data. Objective: People used to follow some strategies for predicting stock value to invest in the more profit-gaining stocks and those strategies to search the stock market prices which are incorporated in some intelligent methods and tools. Such strategies will increase the investor’s profits and also minimize their risks. So prediction plays a vital role in stock market gaining and is also a very intricate and challenging process. Method: The proposed optimized strategies are the Deep Neural Network with Stochastic Gradient for stock prediction. The Neural Network is trained using Back-propagation neural networks algorithm and stochastic gradient descent algorithm as optimal strategies. Results: The experiment is conducted for stock market price prediction using python language with the visual package. In this experiment RELIANCE.NS, TATAMOTORS.NS, and TATAGLOBAL.NS dataset are taken as input dataset and it is downloaded from National Stock Exchange site. The artificial neural network component including Deep Learning model is most effective for more than 100,000 data points to train this model. This proposed model is developed on daily prices of stock market price to understand how to build model with better performance than existing national exchange method.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document