scholarly journals Sports Intelligent Assistance System Based on Deep Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Boyin Wu

Traditional sports aid systems analyze sports data via sensors and other types of equipment and can support athletes with retrospective analysis, but they require several sensors and have limited data. This paper examines a sports aid system that uses deep learning to recognize, review, and analyze behaviors through video acquisition and intelligent video sequence processing. This paper’s primary research is as follows: (1) With an eye on the motion assistance system’s application scenarios, the network topology and implementation details of the two-stage Faster R-CNN and the single-stage YOLOv3 target detection algorithms are investigated. Additionally, training procedures are used to enhance the algorithm’s detection performance and training speed. (2) To address the issue of target detection techniques’ low detection performance in complicated backgrounds, an improved scheme from Faster R-CNN is proposed. To begin, a new approach replaces the VGG-16 network in the previous algorithm with a ResNet-101 network. Second, an expansion plan for the dataset is provided. (3) To address the short duration of action video and the high correlation of image sequence data, we present an action recognition method based on LSTM. To begin, we will present a motion decomposition scheme and evaluation index based on the key transaction frame in order to simplify the motion analysis procedure. Second, the spatial features of the frame images are extracted using a convolutional neural network. Besides, the spatial and temporal aspects of the image sequence are fused using a two-layer bidirectional LSTM network. The algorithm suggested in this research has been validated using a golf experiment, and the results are favorable.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Kate Highnam ◽  
Domenic Puzio ◽  
Song Luo ◽  
Nicholas R. Jennings

AbstractBotnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique architecture is found to be the most consistent in performance in terms of AUC, $$F_1$$ F 1 score, and accuracy when generalising across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential command-and-control networks that commercial vendor tools did not flag.





2020 ◽  
Vol 14 ◽  
Author(s):  
Meghna Dhalaria ◽  
Ekta Gandotra

Purpose: This paper provides the basics of Android malware, its evolution and tools and techniques for malware analysis. Its main aim is to present a review of the literature on Android malware detection using machine learning and deep learning and identify the research gaps. It provides the insights obtained through literature and future research directions which could help researchers to come up with robust and accurate techniques for classification of Android malware. Design/Methodology/Approach: This paper provides a review of the basics of Android malware, its evolution timeline and detection techniques. It includes the tools and techniques for analyzing the Android malware statically and dynamically for extracting features and finally classifying these using machine learning and deep learning algorithms. Findings: The number of Android users is expanding very fast due to the popularity of Android devices. As a result, there are more risks to Android users due to the exponential growth of Android malware. On-going research aims to overcome the constraints of earlier approaches for malware detection. As the evolving malware are complex and sophisticated, earlier approaches like signature based and machine learning based are not able to identify these timely and accurately. The findings from the review shows various limitations of earlier techniques i.e. requires more detection time, high false positive and false negative rate, low accuracy in detecting sophisticated malware and less flexible. Originality/value: This paper provides a systematic and comprehensive review on the tools and techniques being employed for analysis, classification and identification of Android malicious applications. It includes the timeline of Android malware evolution, tools and techniques for analyzing these statically and dynamically for the purpose of extracting features and finally using these features for their detection and classification using machine learning and deep learning algorithms. On the basis of the detailed literature review, various research gaps are listed. The paper also provides future research directions and insights which could help researchers to come up with innovative and robust techniques for detecting and classifying the Android malware.



2021 ◽  
Vol 13 (9) ◽  
pp. 1703
Author(s):  
He Yan ◽  
Chao Chen ◽  
Guodong Jin ◽  
Jindong Zhang ◽  
Xudong Wang ◽  
...  

The traditional method of constant false-alarm rate detection is based on the assumption of an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under the background of sea clutter and other interferences are very low. Therefore, computer vision technology is widely discussed to improve the detection performance. However, the majority of studies have focused on the synthetic aperture radar because of its high resolution. For the defense radar, the detection performance is not satisfactory because of its low resolution. To this end, we herein propose a novel target detection method for the coastal defense radar based on faster region-based convolutional neural network (Faster R-CNN). The main processing steps are as follows: (1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real data set of coastal defense radar are performed. The mean average precision of the proposed method is improved by 10.86% compared with that of the original Faster R-CNN.



2021 ◽  
Vol 13 (4) ◽  
pp. 701 ◽  
Author(s):  
Binbin Wang ◽  
Hao Cha ◽  
Zibo Zhou ◽  
Bin Tian

Clutter cancellation and long time integration are two vital steps for global navigation satellite system (GNSS)-based bistatic radar target detection. The former eliminates the influence of direct and multipath signals on the target detection performance, and the latter improves the radar detection range. In this paper, the extensive cancellation algorithm (ECA), which projects the surveillance channel signal in the subspace orthogonal to the clutter subspace, is first applied in GNSS-based bistatic radar. As a result, the clutter has been removed from the surveillance channel effectively. For long time integration, a modified version of the Fourier transform (FT), called long-time integration Fourier transform (LIFT), is proposed to obtain a high coherent processing gain. Relative acceleration (RA) is defined to describe the Doppler variation results from the motion of the target and long integration time. With the estimated RA, the Doppler frequency shift compensation is carried out in the LIFT. This method achieves a better and robust detection performance when comparing with the traditional coherent integration method. The simulation results demonstrate the effectiveness and advantages of the proposed processing method.



Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 646
Author(s):  
Bini Darwin ◽  
Pamela Dharmaraj ◽  
Shajin Prince ◽  
Daniela Elena Popescu ◽  
Duraisamy Jude Hemanth

Precision agriculture is a crucial way to achieve greater yields by utilizing the natural deposits in a diverse environment. The yield of a crop may vary from year to year depending on the variations in climate, soil parameters and fertilizers used. Automation in the agricultural industry moderates the usage of resources and can increase the quality of food in the post-pandemic world. Agricultural robots have been developed for crop seeding, monitoring, weed control, pest management and harvesting. Physical counting of fruitlets, flowers or fruits at various phases of growth is labour intensive as well as an expensive procedure for crop yield estimation. Remote sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The automation in image analysis with computer vision and deep learning models provides precise field and yield maps. In this review, it has been observed that the application of deep learning techniques has provided a better accuracy for smart farming. The crops taken for the study are fruits such as grapes, apples, citrus, tomatoes and vegetables such as sugarcane, corn, soybean, cucumber, maize, wheat. The research works which are carried out in this research paper are available as products for applications such as robot harvesting, weed detection and pest infestation. The methods which made use of conventional deep learning techniques have provided an average accuracy of 92.51%. This paper elucidates the diverse automation approaches for crop yield detection techniques with virtual analysis and classifier approaches. Technical hitches in the deep learning techniques have progressed with limitations and future investigations are also surveyed. This work highlights the machine vision and deep learning models which need to be explored for improving automated precision farming expressly during this pandemic.



2021 ◽  
Vol 13 (4) ◽  
pp. 594
Author(s):  
Rui Wang ◽  
Yiming Zhang ◽  
Weiming Tian ◽  
Jiong Cai ◽  
Cheng Hu ◽  
...  

Entomological radars are important for scientific research of insect migration and early warning of migratory pests. However, insects are hard to detect because of their tiny size and highly maneuvering trajectory. Generalized Radon–Fourier transform (GRFT) has been proposed for effective weak maneuvering target detection by long-time coherent detection via jointly motion parameter search, but the heavy computational burden makes it impractical in real signal processing. Particle swarm optimization (PSO) has been used to achieve GRFT detection by fast heuristic parameter search, but it suffers from obvious detection probability loss and is only suitable for single target detection. In this paper, we convert the realization of GRFT into a multimodal optimization problem for insect multi-target detection. A novel niching method without radius parameter is proposed to detect unevenly distributed insect targets. Species reset and boundary constraint strategy are used to improve the detection performance. Simulation analyses of detection performance and computational cost are given to prove the effectiveness of the proposed method. Furthermore, real observation data acquired from a Ku-band entomological radar is used to test this method. The results show that it has better performance on detected target amount and track continuity in insect multi-target detection.



Sign in / Sign up

Export Citation Format

Share Document