scholarly journals Study on the Application Value of CT Thin-Layer Scan Data Assisted 3D Printing Technology in Hip and Knee Replacement

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Shihua Sun ◽  
Yongbin Xi ◽  
Xingchen Shi ◽  
Li Zhao ◽  
Fuming Ma ◽  
...  

To better study hip and knee replacement, 50 eligible hip and knee patients from March 2020 to April 2021 were selected. A 1 : 1 scale solid model was printed with CT thin-layer scanning data assisted by 3D printing technology to evaluate the ankle function of patients six months after surgery. The results showed that the 3D rapid prototyping time of the 1 : 1 fracture model in 50 patients was 3-4 hours. The operation time was 70–90 min, and the average operation time was 80 min. The actual application in operation was consistent with that in the simulation of the 3D printing model, after surgery, and there was no infection of incision soft tissue or loss of reduction in all 50 patients. CT thin-layer scan data aided 3D printing technology can help clinical hip and knee replacement simulation and planning, improving surgery’s accuracy and safety.

2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110285
Author(s):  
Kai Xiao ◽  
Bo Xu ◽  
Lin Ding ◽  
Weiguang Yu ◽  
Lei Bao ◽  
...  

Objective To assess the outcomes of traditional three-dimensional (3D) printing technology (TPT) versus mirror 3D printing technology (MTT) in treating isolated acetabular fractures (IAFs). Methods Consecutive patients with an IAF treated by either TPT or MTT at our tertiary medical centre from 2012 to 2018 were retrospectively reviewed. Follow-up was performed 1, 3, 6, and 12 months postoperatively and annually thereafter. The primary outcome was the Harris hip score (HHS), and the secondary outcomes were major intraoperative variables and key orthopaedic complications. Results One hundred fourteen eligible patients (114 hips) with an IAF (TPT, n = 56; MTT, n = 58) were evaluated. The median follow-up was 25 months (range, 21–28 months). At the last follow-up, the mean HHS was 82.46 ±14.70 for TPT and 86.30 ± 13.26 for MTT with a statistically significant difference. Significant differences were also detected in the major intraoperative variables (operation time, intraoperative blood loss, number of fluoroscopic screenings, and anatomical reduction number) and the major orthopaedic complications (loosening, implant failure, and heterotopic ossification). Conclusion Compared with TPT, MTT tends to produce accurate IAF reduction and may result in better intraoperative variables and a lower rate of major orthopaedic complications.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1800 ◽  
Author(s):  
Park ◽  
Lee

In this study, we present the development of fall-impact protection pads for elderly people using three-dimensional (3D) printing technology. To develop fall-impact protection clothing, it is important to maintain the functionality of the protection pad while ensuring that its effectiveness and appearance remain optimal in the process of inserting it. Therefore, this study explores the benefit of exploiting 3D scan data of the human body using 3D printing technology to develop a fall-impact protection pad that is highly suited to the human body shape. The purpose of this study was to present a 3D modeling process for creating curved protective pads comprising a hexagonal mesh with a spacer fabric structure and to verify the impact protection performance by printing curved pads. To this end, we set up a section that includes pads in the 3D human body scan data and extracted body surface information to be applied in the generation of the pad surface. The sheet-shaped hexagonal mesh structure was cut and separated according to the pad outline, and then deformed according to the curved surface of the human body. The pads were printed, and their protection performance was evaluated; a 79.2–81.8% reduction in impact force was observed compared to similar cases in which the pads were not used.


2021 ◽  
Author(s):  
Jiang long Guo ◽  
Hong yi Li ◽  
Kui Zhao ◽  
Meng Zhang ◽  
Jing zhi Ye ◽  
...  

Abstract Purpose To comparethe effectiveness of the three-dimensional (3D) printing technology in the treatment of clavicularfracturebetween experienced and inexperienced orthopedic surgeons. Methods A total of 80 patients with clavicle fracture (from February 2017 to May 2021)were enrolled in our study. Patients were divided randomly into four groups: group A: Patients underwent low-dose CT scan and 3D models were printed before surgeries performed by inexperienced surgeons; group B: Standard-dose CT were taken and 3D models were printed before surgeries performed by experienced surgeons; group C and D: Standard-dose CT were taken in both groups, and the operations were performed differently by inexperienced (group C) and experienced (group D) surgeons. Operation time, blood loss, length of incision and number of intraoperative fluoroscopy were recorded. Results No statistically significant differences were found in age, gender, fracture site and fracture type (P value: 0.23–0.88).Group A showed shorter incision length and less intraoperative fluoroscopy times than group C and D (P value < 0.05). There were no significant differences in blood loss volume, incision length and number of intraoperative time between group A and group B (P value range: 0.11–0.28). The operation time of group A was no longer than that of group C and D (P value range: 0.11 and 0.24). Conclusion The surgical effectiveness of inexperienced surgeons who applied 3D printing technology before clavicular fracture operation were better than those of both inexperienced and experienced surgeons did not use preoperative 3D printing technology.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jin Cao ◽  
Huanye Zhu ◽  
Chao Gao

Purpose. Three-dimensional (3D) printing technology has been widely used in orthopedics surgery. However, its efficacy in acetabular fractures remains unclear. The aim of this systematic review and meta-analysis was to examine the effect of using 3D printing technology in the surgery for acetabular fractures. Methods. The systematic review was performed following the PRISMA guidelines. Four major electronic databases were searched (inception to February 2021). Studies were screened using a priori criteria. Data from each study were extracted by two independent reviewers and organized using a standardized table. Data were pooled and presented in forest plots. Results. Thirteen studies were included in the final analysis. Four were prospective randomized trials, and nine used a retrospective comparative design. The patients aged between 32.1 (SD 14.6) years and 51.9 (SD 18.9) years. Based on the pooled analyses, overall, 3D printing-assisted surgery decreased operation time by 38.8 minutes (95% CI: -54.9, -22.8), intraoperative blood loss by 259.7 ml (95% CI: -394.6, -124.9), instrumentation time by 34.1 minutes (95% CI: -49.0, -19.1). Traditional surgery was less likely to achieve good/excellent function of hip (RR, 0.53; 95% CI: 0.34, 0.82) and more likely to have complications than 3D printing-assisted surgery (RR, 1.19; 95% CI: 1.07, 1.33). Conclusions. 3D printing technology demonstrated efficacy in the treatment of acetabular fractures. It may improve surgery-related and clinical outcomes. More prospective studies using a rigorous design (e.g., randomized trial with blinding) are warranted to confirm the long-term effects of 3D printing technology in orthopedics surgeries.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guochen Luo ◽  
Yao Zhang ◽  
Xiahua Wang ◽  
Shuaishuai Chen ◽  
Dongyi Li ◽  
...  

Abstract Background The irregular anatomical shape and complex structures of irregular bones make it more difficult to repair and reconstruct bone defects in irregular bones than in the long bones of the extremities. Three-dimensional (3D) printing technology can help to overcome the technical limitations of irregular bone repair by generating simulations that enable structural integration of the lesion area and bone structure of the donor site in all directions and at multiple angles. Thus, personalized and accurate treatment plans for restoring anatomical structure, muscle attachment points, and maximal function can be made. The present study aimed to investigate the ability of 3D printing technology to assist in the repair and reconstruction of scapular aneurysmal ABC defects. Methods The study included seven patients with ABCs of the scapula. Based on computed tomography (CT) data for the patient, the scapula (including the defect) and pelvis were reconstructed using Mimics Medical software. The reconstructed scapula model was printed using a 3D printer. Before the operation, the model was used to design the surgical approach and simulate the operation process, to determine the length and radius of the plate and the number and direction of screws, and to determine the bone mass of the ilium and develop reasonable strategies for segmentation and distribution. The operation time, amount of bleeding, length and radius of the plate, and direction and number of screws were recorded. Results The average duration of follow-up was 25.6 months, and none of the seven patients experienced recurrence during the follow-up period. The surgical approach, the length and radius of internal fixation, and the number and direction of screws were consistent with the designed operation plan. Patients gradually recovered the anatomical structure of the scapula and function of the shoulder joint. Conclusions In the treatment of bone defects caused by irregular bone tumors, 3D printing technology combined with surgery has the advantages of less trauma, short operation time, less bleeding and reducing the difficulty of operation, which can reduce the waste of bone graft, and more complete reconstruction of the anatomical structure of the defective bone.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Wenhao Zheng ◽  
Chunhui Chen ◽  
Chuanxu Zhang ◽  
Zhenyu Tao ◽  
Leyi Cai

Purpose. The aim of this study was to assess the feasibility and effectiveness of the three-dimensional (3D) printing technology in the treatment of Pilon fractures. Methods. 100 patients with Pilon fractures from March 2013 to December 2016 were enrolled in our study. They were divided randomly into 3D printing group (n=50) and conventional group (n=50). The 3D models were used to simulate the surgery and carry out the surgery according to plan in 3D printing group. Operation time, blood loss, fluoroscopy times, fracture union time, and fracture reduction as well as functional outcomes including VAS and AOFAS score and complications were recorded. To examine the feasibility of this approach, we invited surgeons and patients to complete questionnaires. Results. 3D printing group showed significantly shorter operation time, less blood loss volume and fluoroscopy times, higher rate of anatomic reduction and rate of excellent and good outcome than conventional group (P<0.001, P<0.001, P<0.001, P=0.040, and P=0.029, resp.). However, no significant difference was observed in complications between the two groups (P=0.510). Furthermore, the questionnaire suggested that both surgeons and patients got high scores of overall satisfaction with the use of 3D printing models. Conclusion. Our study indicated that the use of 3D printing technology to treat Pilon fractures in clinical practice is feasible.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Rong-Feng She ◽  
Yi Zhang ◽  
Bin Zhang ◽  
Yuan-Zheng Wang ◽  
Qi-Xiang Huang

We aimed to design an individualized intra-articular stabilization device based on 3D printing technology and investigate the clinical effects of this device for treating traumatic instability of the ulnohumeral joint. This study enrolled nine patients with traumatic instability of the ulnohumeral joint (age: 47.2 ± 1.80   years ) who received treatment between March 2018 and March 2019 in our hospital. All patients underwent a thin-layer computed tomography (CT) scan of the elbow before surgery. The original injury and repair models of the elbow were printed using 3D printing technology based on CT data. An individualized intra-articular stabilization device was designed with a 2.0 mm Kirschner wire based on the repair model. Nine patients agreed to receive surgical treatment for elbow disease and placement of the intra-articular stabilization device. The nine patients underwent open reduction through a posterior median approach, and the intra-articular stabilization device was placed in the elbow. Operation time, intraoperative blood loss, and postoperative complications were recorded and followed up. The device was removed at two postoperative months, and the Mayo score was used to evaluate elbow function. Four months after removing the intra-articular stabilization device, elbow joint function was evaluated again using the Mayo score. The mean operation time was 100.1 ± 8.2   min , and the mean intraoperative blood loss was 35.5 ± 7.1   ml . No complications occurred after operation. Two months after surgery, eight patients received an excellent Mayo score, and one patient received a good Mayo score. Four months after removal of the intra-articular stabilization device, eight patients received an excellent Mayo score, and one patient received a good Mayo score. The individualized intra-articular stabilization device can increase ulnohumeral stability and achieve rapid functional recovery of the elbow.


2020 ◽  
Vol 48 (5) ◽  
pp. 030006052092425
Author(s):  
Cong Yu ◽  
Weiguang Yu ◽  
Shuai Mao ◽  
Peiru Zhang ◽  
Xinchao Zhang ◽  
...  

Objective This study was performed to compare the clinical outcomes of traditional three-dimensional (3D) printing technology and 3D printing mirror model technology in the treatment of isolated acetabular fractures. Methods Prospectively maintained databases were reviewed to retrospectively compare patients with an isolated acetabular fracture who were treated with traditional 3D printing technology (Group T) or 3D printing mirror model technology (Group M) from 2011 to 2017. In total, 146 advanced-age patients (146 hips) with an isolated acetabular fracture (Group T, n = 72; Group M, n = 74) were assessed for a mean follow-up period of 29 months (range, 24–34 months). The primary endpoint was the postoperative Harris hip score (HHS). The secondary endpoints were the operation time, intraoperative blood loss, fluoroscopy screening time, fracture reduction quality, and incidence of postoperative complications at the final follow-up. Results The HHS, operation time, intraoperative blood loss, fluoroscopy screening time, and incidence of postoperative complications were significantly different between the groups, with Group M showing superior clinical outcomes. Conclusion In patients with an isolated acetabular fracture, 3D printing mirror model technology might lead to more accurate and efficient treatment than traditional 3D printing technology.


Sign in / Sign up

Export Citation Format

Share Document