scholarly journals Molecular Dynamics Simulation of the Effects of Methane Hydrate Phase Transition on Mechanical Properties of Deep-Sea Methane Hydrate-Bearing Soil

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanmei Zhang ◽  
Jian Zhang ◽  
Guoxun Li ◽  
Changda Sun ◽  
Yalin Luan ◽  
...  

In this paper, the methane hydrate phase transition process in deep-sea methane hydrate-bearing soil under heating and compression was simulated by the molecular dynamics method. The evolution of deep-sea methane hydrate-bearing soil’s microstructure, system energy, intermolecular interaction energy, and radial distribution function during heating and compression was investigated. The micromechanism of the influence of the methane hydrate phase transition on the mechanical properties of deep-sea methane hydrate-bearing soil was analyzed. The results demonstrated that the methane hydrate dissociation starts from both sides to the middle and the void spaces between the soil particles had nearly no change during the heating process. For the compression process, the methane hydrate on both sides and the middle dissociated at the same time, and the void spaces became smaller. The methane hydrate phase transition on the effects of mechanical properties of the deep-sea methane hydrate-bearing soil is mainly caused by three aspects. (1) the dissociation of methane hydrate incurs the decrease of methane hydrate saturation. The free water and methane molecules generated cannot migrate in time and thus lead to the increase of excess pore water press and excess pore gas press. (2) The dissipated energy causes the decrease of the effective stress between the soil particles. (3) Due to the methane hydrate decomposition, the free water molecules increase, which reduces the friction of soil particles.

2020 ◽  
Vol 18 (1) ◽  
pp. 69-76
Author(s):  
Qiang Wang ◽  
Qizhong Tang ◽  
Sen Tian

AbstractMolecular dynamics (MD) analysis of methane hydrate is important for the application of methane hydrate technology. This study investigated the microstructure changes of sI methane hydrate and the laws of stress–strain evolution under the condition of compression and tension by using MD simulation. This study further explored the mechanical property and stability of sI methane hydrate under different stress states. Results showed that tensile and compressive failures produced an obvious size effect under a certain condition. At low temperature and high pressure, most of the clathrate hydrate maintained a stable structure in the tensile fracture process, during which only a small amount of unstable methane broke the structure, thereby, presenting a free-motion state. The methane hydrate cracked when the system reached the maximum stress in the loading process, in which the maximum compressive stress is larger than the tensile stress under the same experimental condition. This study provides a basis for understanding the microscopic stress characteristics of methane hydrate.


2011 ◽  
Vol 378-379 ◽  
pp. 7-10
Author(s):  
Gui Xue Bian ◽  
Yue Liang Chen ◽  
Jian Jun Hu ◽  
Li Xu

Molecular dynamics simulation was used to simulate the tension process of purity and containing impurity metal aluminum. Elastic constants of purity and containing impurity metal aluminum were calculated, and the effects of impurity on the elastic constants were also studied. The results show that O-Al bond and Al-Al bond near oxygen atoms could be the sites of crack nucleation or growth under tensile load, the method can be extended to research mechanical properties of other metals and alloys structures.


2002 ◽  
Vol 157 (6-12) ◽  
pp. 799-803 ◽  
Author(s):  
T. Kurobori ◽  
M. Liu ◽  
H. Tsunekawa ◽  
Y. Hirose ◽  
M. Takeuchi

Sign in / Sign up

Export Citation Format

Share Document