scholarly journals Highway Traffic Speed Prediction in Rainy Environment Based on APSO-GRU

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongqing Han ◽  
Xin Yang ◽  
Guang Li ◽  
Shuangyin Wang ◽  
Zhen Wang ◽  
...  

In order to accurately analyse the impact of the rainy environment on the characteristics of highway traffic flow, a short-term traffic flow speed prediction model based on gate recurrent unit (GRU) and adaptive nonlinear inertia weight particle swarm optimization (APSO) was proposed. Firstly, the rainfall and highway traffic flow data were cleaned, and then they are matched according to the spatiotemporal relationship. Secondly, through the method of multivariate analysis of variance, the significance of the impact of potential factors on traffic flow speed was explored. Then, a GRU-based traffic flow speed prediction model in rainy environment is proposed, and the actual road sections under different rainfall scenarios were verified. After that, in view of the problem that the prediction accuracy of the GRU model was low in the continuous rainfall scenario, the APSO algorithm was used to optimize the parameters of the GRU network, and the APSO-GRU prediction model was constructed and verifications under the same road section and rain scene were carried out. The results show that the APSO-GRU model has significantly improved prediction stability than the GRU model and can better extract rainfall features during continuous rainfall, with an average prediction accuracy rate of 96.74%.

Author(s):  
Parthkumar Patel ◽  
H.R. Varia

Safe, convenient and timely transportation of goods and passengers is necessary for development of nation. After independence road traffic is increased manifold in India. Modal share of freight transport is shifted from Railway to roadways in India. Road infrastructures continuously increased from past few decades but there is still need for new roads to be build and more than three forth of the roads having mixed traffic plying on it. The impact of freight vehicles on highway traffic is enormous as they are moving with slow speeds. Nature of traffic flow is dependent on various traffic parameters such as speed, density, volume and travel time etc. As per ideal situation these traffic parameters should remain intact, but it is greatly affected by presence of heavy vehicle in mixed traffic due to Svehicles plying on two lane roads. Heavy vehicles affect the traffic flow because of their length and size and acceleration/deceleration characteristics.  This study is aimed to analyse the impact of heavy vehicles on traffic parameters.


2014 ◽  
Vol 70 (4) ◽  
Author(s):  
Nordiana Mashros ◽  
Johnnie Ben- Edigbe ◽  
Sitti Asmah Hassan ◽  
Norhidayah Abdul Hassan ◽  
Nor Zurairahetty Mohd Yunus

This paper explores the impact of various rainfall conditions on traffic flow and speed at selected location in Terengganu and Johor using data collected on two-lane highway. The study aims to quantify the effect of rainfall on average volume, capacity, mean speed, free-flow speed and speed at capacity. This study is important to come out with recommendation for managing traffic under rainfall condition. Traffic data were generated using automatic traffic counters for about three months during the monsoon season. Rainfall data were obtained from nearest surface rain gauge station. Detailed vehicular information logged by the counters were retrieved and processed into dry and various rainfall conditions. Only daylight traffic data have been used in this paper. The effect of rain on traffic flow and speed for each condition were then analysed separately and compared. The results indicated that average volumes shows no pronounce effect under rainfall condition compared to those under dry condition. Other parameters, however, show a decrease under rainfall condition. Capacity dropped by 2-32%, mean speed, free-flow speed and speed at capacity reduced by 3-14%, 1-14% and 3-17%, respectively. The paper recommends that findings from the study can be incorporated with variable message sign, local radio and television, and variable speed limit sign which should help traffic management to provide safer and more proactive driving experiences to the road user. The paper concluded that rainfall irrespective of their intensities have impact on traffic flow and speed except average volume.


Author(s):  
Ruimin Ke ◽  
Wan Li ◽  
Zhiyong Cui ◽  
Yinhai Wang

Traffic speed prediction is a critically important component of intelligent transportation systems. Recently, with the rapid development of deep learning and transportation data science, a growing body of new traffic speed prediction models have been designed that achieved high accuracy and large-scale prediction. However, existing studies have two major limitations. First, they predict aggregated traffic speed rather than lane-level traffic speed; second, most studies ignore the impact of other traffic flow parameters in speed prediction. To address these issues, the authors propose a two-stream multi-channel convolutional neural network (TM-CNN) model for multi-lane traffic speed prediction considering traffic volume impact. In this model, the authors first introduce a new data conversion method that converts raw traffic speed data and volume data into spatial–temporal multi-channel matrices. Then the authors carefully design a two-stream deep neural network to effectively learn the features and correlations between individual lanes, in the spatial–temporal dimensions, and between speed and volume. Accordingly, a new loss function that considers the volume impact in speed prediction is developed. A case study using 1-year data validates the TM-CNN model and demonstrates its superiority. This paper contributes to two research areas: (1) traffic speed prediction, and (2) multi-lane traffic flow study.


2019 ◽  
Vol 276 ◽  
pp. 03018
Author(s):  
Nahry Yusuf ◽  
Ismi Dilianda Wulandari

Freight vehicle access restriction policy in 2011 has had an impact on the performance of Jakarta Intra Urban Toll way (JIUT) system. The statutory segment (Cawang-Tomang) of this toll road system seems to have better performance, but not for the advisory segment (Cawang -Ancol). Basically, heavy vehicles (HV) shift their routes to the advisory segment to avoid the statutory segment at which they are prohibited to access from 05.00 a.m. to 10.00 p.m.. This study aims to investigate the impact of the HV composition on the traffic performance of the advisory segment of JIUT. Data were obtained from 48 hours of traffic recording at a part of Cawang-Ancol segment. It was found that the Underwood Model (exponential model) can represent the relationship between the three main parameters of traffic flow on the advisory segment, i.e. volume, speed, and density. Based on the developed traffic flow models which are classified on the HV composition, it is shown that the free flow speed (uf) for HV composition < 6% (i.e. 144.91 km/h) is higher 35.41% than the one of HV > 6% (i.e. 107.02 km/h). The actual road capacity (qm) in HV composition < 6% (i.e. 4442 pcu/hour) also higher 12.83% than the one of HV > 6% (i.e. 3937 pcu/hour). The results will benefit to the transport authority to justify the truck access restriction implementation.


2021 ◽  
Vol 13 (20) ◽  
pp. 4058
Author(s):  
Lin Zhao ◽  
Nan Li ◽  
Hui Li ◽  
Renlong Wang ◽  
Menghao Li

The periodic noise exists in BeiDou navigation satellite system (BDS) clock offsets. As a commonly used satellite clock prediction model, the spectral analysis model (SAM) typically detects and identifies the periodic terms by the Fast Fourier transform (FFT) according to long-term clock offset series. The FFT makes an aggregate assessment in frequency domain but cannot characterize the periodic noise in a time domain. Due to space environment changes, temperature variations, and various disturbances, the periodic noise is time-varying, and the spectral peaks vary over time, which will affect the prediction accuracy of the SAM. In this paper, we investigate the periodic noise and its variations present in BDS clock offsets, and improve the clock prediction model by considering the periodic variations. The periodic noise and its variations over time are analyzed and quantified by short time Fourier transform (STFT). The results show that both the amplitude and frequency of the main periodic term in BDS clock offsets vary with time. To minimize the impact of periodic variations on clock prediction, a time frequency analysis model (TFAM) based on STFT is constructed, in which the periodic term can be quantified and compensated accurately. The experiment results show that both the fitting and prediction accuracy of TFAM are better than SAM. Compared with SAM, the average improvement of the prediction accuracy using TFAM of the 6 h, 12 h, 18 h and 24 h is in the range of 6.4% to 10% for the GNSS Research Center of Wuhan University (WHU) clock offsets, and 11.1% to 14.4% for the Geo Forschungs Zentrum (GFZ) clock offsets. For the satellites C06, C14, and C32 with marked periodic variations, the prediction accuracy is improved by 26.7%, 16.2%, and 16.3% for WHU clock offsets, and 29.8%, 16.0%, 21.0%, and 9.0% of C06, C14, C28, and C32 for GFZ clock offsets.


2013 ◽  
Vol 300-301 ◽  
pp. 189-194 ◽  
Author(s):  
Yu Sun ◽  
Ling Ling Li ◽  
Xiao Song Huang ◽  
Chao Ying Duan

To avoid the impact which is caused by the characteristics of the random fluctuations of the wind speed to grid-connected wind power generation system, accurately prediction of short-term wind speed is needed. This paper designed a combination prediction model which used the theories of wavelet transformation and support vector machine (SVM). This improved the model’s prediction accuracy through the method of achiving change character in wind speed sequences in different scales by wavelet transform and optimizing the parameters of support vector machines through the improved particle swarm algorithm. The model showed great generalization ability and high prediction accuracy through the experiment. The lowest root-mean-square error of 200 samples was up to 0.0932 and the model’s effect was much stronger than the BP neural network prediction model. It provided an effective method for predicting wind speed.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ivan Marović ◽  
Ivana Sušanj ◽  
Nevenka Ožanić

The impact of natural disasters increases every year with more casualties and damage to property and the environment. Therefore, it is important to prevent consequences by implementation of the early warning system (EWS) in order to announce the possibility of the harmful phenomena occurrence. In this paper, focus is placed on the implementation of the EWS on the micro location in order to announce possible harmful phenomena occurrence caused by wind. In order to predict such phenomena (wind speed), an artificial neural network (ANN) prediction model is developed. The model is developed on the basis of the input data obtained by local meteorological station on the University of Rijeka campus area in the Republic of Croatia. The prediction model is validated and evaluated by visual and common calculation approaches, after which it was found that it is possible to perform very good wind speed prediction for time steps Δt=1 h, Δt=3 h, and Δt=8 h. The developed model is implemented in the EWS as a decision support for improvement of the existing “procedure plan in a case of the emergency caused by stormy wind or hurricane, snow and occurrence of the ice on the University of Rijeka campus.”


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Youjin Jang ◽  
Inbae Jeong ◽  
Yong K. Cho

PurposeThe study seeks to identify the impact of variables in a deep learning-based bankruptcy prediction model, which has achieved superior performance to other prediction models but cannot easily interpret hidden processes.Design/methodology/approachThis study developed three LSTM-RNN–based models that predicted the probability of bankruptcy before 1, 2 and 3 years using financial, the construction market and macroeconomic variables as input variables. Then, the impacts of the input variables that affected prediction accuracy in each model were identified by using Shapley value and compared among the three models. This study also investigated the prediction accuracy using variants of input variables grouped sequentially by high-impact ranking.FindingsThe results showed that the prediction accuracies were largely impacted by “housing starts” in all models. As the prediction period increased, the effects of macroeconomic variables on prediction accuracy increased, whereas the impact of “return on assets” on prediction accuracy decreased. It also found that the “current ratio” and “debt ratio” significantly influenced the prediction accuracies in all models. Also, the results revealed that similar prediction accuracies could be achieved using only 8, 10, and 10 variables out of a total of 18 variables for the 1-, 2-, and 3-year prediction models, respectively.Originality/valueThis study provides a Shapley value-based approach to identify how each input variable in a deep-learning bankruptcy prediction model. The findings of this study can not only assist in obtaining better insights into the underlying concept of bankruptcy but also use to select variables by removing those identified as less significant.


Sign in / Sign up

Export Citation Format

Share Document