scholarly journals Application of Wireless Virtual Reality Perception and Simulation Technology in Film and Television Animation

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Di Lei ◽  
Sae-Hoon Kim

Wireless virtual reality integrated multidisciplinary technology, combined with related industries and fields, has changed the way of human-computer interaction and opened up a new field of user experience. In recent years, with the rapid improvement of computer technology and hardware conditions, interactive technology has developed rapidly. The existing wireless virtual reality interactive system is too single and cannot be used in multiple environments. The original system requires a large number of sensor equipment, the cost is high, and the traditional perception technology is too restrictive and cannot realize human-computer interaction more naturally. This paper proposes a dual intention perception algorithm based on the fusion of touch (obtained by experimental simulation equipment), hearing, and vision. The algorithm can perceive the user’s operation intention through the user’s natural behavior and can identify the user’s two intentions at the same time. This paper proposes a navigational interactive mode, which provides users with multimodal intelligent navigation through intelligent perception of user intent and experimental progress. We determine the impact model of the interactive system effect evaluation and analyze its effect evaluation strategy in depth and then further quantify the indicators under the four effect dimensions of information perception, artistic reflection, social entertainment, and aesthetic experience. A combination of qualitative and quantitative methods was used to carry out relevant research on effect evaluation, usability test, and questionnaire interview. The experimental results show that this interactive system has better entertainment effects than other forms of film and television animation, but still needs to pay attention to and strengthen the construction and embodiment of film and television animation content, as well as the optimization and perfection of the fault-tolerant mechanism in the design process.

1992 ◽  
Vol 36 (14) ◽  
pp. 1049-1049 ◽  
Author(s):  
Maxwell J. Wells

Cyberspace is the environment created during the experience of virtual reality. Therefore, to assert that there is nothing new in cyberspace alludes to there being nothing new about virtual reality. Is this assertion correct? Is virtual reality an exciting development in human-computer interaction, or is it simply another example of effective simulation? Does current media interest herald a major advance in information technology, or will virtual reality go the way of artificial intelligence, cold fusion and junk bonds? Is virtual reality the best thing since sliced bread, or is it last week's buns in a new wrapper?


2018 ◽  
Vol 09 (04) ◽  
pp. 841-848
Author(s):  
Kevin King ◽  
John Quarles ◽  
Vaishnavi Ravi ◽  
Tanvir Chowdhury ◽  
Donia Friday ◽  
...  

Background Through the Health Information Technology for Economic and Clinical Health Act of 2009, the federal government invested $26 billion in electronic health records (EHRs) to improve physician performance and patient safety; however, these systems have not met expectations. One of the cited issues with EHRs is the human–computer interaction, as exhibited by the excessive number of interactions with the interface, which reduces clinician efficiency. In contrast, real-time location systems (RTLS)—technologies that can track the location of people and objects—have been shown to increase clinician efficiency. RTLS can improve patient flow in part through the optimization of patient verification activities. However, the data collected by RTLS have not been effectively applied to optimize interaction with EHR systems. Objectives We conducted a pilot study with the intention of improving the human–computer interaction of EHR systems by incorporating a RTLS. The aim of this study is to determine the impact of RTLS on process metrics (i.e., provider time, number of rooms searched to find a patient, and the number of interactions with the computer interface), and the outcome metric of patient identification accuracy Methods A pilot study was conducted in a simulated emergency department using a locally developed camera-based RTLS-equipped EHR that detected the proximity of subjects to simulated patients and displayed patient information when subjects entered the exam rooms. Ten volunteers participated in 10 patient encounters with the RTLS activated (RTLS-A) and then deactivated (RTLS-D). Each volunteer was monitored and actions recorded by trained observers. We sought a 50% improvement in time to locate patients, number of rooms searched to locate patients, and the number of mouse clicks necessary to perform those tasks. Results The time required to locate patients (RTLS-A = 11.9 ± 2.0 seconds vs. RTLS-D = 36.0 ± 5.7 seconds, p < 0.001), rooms searched to find patient (RTLS-A = 1.0 ± 1.06 vs. RTLS-D = 3.8 ± 0.5, p < 0.001), and number of clicks to access patient data (RTLS-A = 1.0 ± 0.06 vs. RTLS-D = 4.1 ± 0.13, p < 0.001) were significantly reduced with RTLS-A relative to RTLS-D. There was no significant difference between RTLS-A and RTLS-D for patient identification accuracy. Conclusion This pilot demonstrated in simulation that an EHR equipped with real-time location services improved performance in locating patients and reduced error compared with an EHR without RTLS. Furthermore, RTLS decreased the number of mouse clicks required to access information. This study suggests EHRs equipped with real-time location services that automates patient location and other repetitive tasks may improve physician efficiency, and ultimately, patient safety.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuai Jiang ◽  
Lei Wang ◽  
Yuanyuan Dong

In order to improve the online English teaching effect, the paper applies the sensor and human-computer interaction into the English teaching. The paper improves the sensor information by applying Kalman Filter, combines sensor positioning algorithm to trace the students in the English teaching online, and turns the kernels by the skeleton algorithm into corresponding coordinates of space rectangular coordinate system taking the waist as a coordinate origin to get a human-computer interaction skeleton model in the virtual reality. According to the actual needs of English teaching human-computer interaction, the paper builds a new English teaching system based on the sensor and the human-computer interaction and tests its performance. The experiments suggest that the smart system in the paper can effectively improve English teaching effects.


2017 ◽  
Vol 1 (2) ◽  
pp. 18-41
Author(s):  
Zeenat AlKassim ◽  
Nader Mohamed

This paper discusses recent and unique inventions in Human Computer Interaction (HCI). To that end, firstly the authors discuss the Sixth Sense Technology. This technology allows users to interact with virtual objects in the real world in a unique manner. It has a number of applications which are further discussed. Then the opportunities and challenges are discussed. Most importantly, a list of inventions in fields of Augmented Reality (AR) and Virtual Reality (VR) in the recent years are discussed, grouped and compared. These include the smart eye glasses, VR headsets, smart watches, and more. Future implications of all those technologies are brought into light considering the new advancements in software and hardware designs. Recommendations are highlighted for future inventions.


Author(s):  
Daniela Fogli ◽  
Andrea Marcante ◽  
Piero Mussio

In this chapter it is recognized that the knowledge relevant to the design of an interactive system is distributed among several stakeholders: domain experts, software engineers and Human-Computer Interaction experts. Hence, the design of an interactive system is a multi-facet activity requiring the collaboration of experts from these communities. Each community describes an interactive system through visual sentences of a Visual Language (VL). A first VL allows domain experts to reason on the system usage in their specific activities. A second VL, the State-Chart language, is used to specify the system behaviour for software engineers purposes. A communication gap exists among the two communities, in that domain experts do not understand software engineers jargon and vice versa. To overcome this gap, a third VL permits Human-Computer Interaction experts to translate the user view of the system embedded in their Visual Language into a specification in the software engineering Visual Language.


Sign in / Sign up

Export Citation Format

Share Document