scholarly journals Region Matching of SAR Images Using Blocks for Target Recognition

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chao Shan ◽  
Minggao Li ◽  
Zihao Chen ◽  
Lei Han

A synthetic aperture radar (SAR) target recognition method based on image blocking and matching is proposed. The test SAR image is first separated into four blocks, which are analyzed and matched separately. For each block, the monogenic signal is employed to describe its time-frequency distribution and local details with a feature vector. The sparse representation-based classification (SRC) is used to classify the four monogenic feature vectors and produce the reconstruction error vectors. Afterwards, a random weight matrix with a rich set of weight vectors is used to linearly fuse the feature vectors and all the results are analyzed in a statistical way. Finally, a decision value is designed based on the statistical analysis to determine the target label. The proposed method is tested on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results confirm the validity of the proposed method.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Chenyu Li ◽  
Guohua Liu

This paper applied block sparse Bayesian learning (BSBL) to synthetic aperture radar (SAR) target recognition. The traditional sparse representation-based classification (SRC) operates on the global dictionary collaborated by different classes. Afterwards, the similarities between the test sample and various classes are evaluated by the reconstruction errors. This paper reconstructs the test sample based on local dictionaries formed by individual classes. Considering the azimuthal sensitivity of SAR images, the linear coefficients on the local dictionary are sparse ones with block structure. Therefore, to solve the sparse coefficients, the BSBL is employed. The proposed method can better exploit the representation capability of each class, thus benefiting the recognition performance. Based on the experimental results on the moving and stationary target acquisition and recognition (MSTAR) dataset, the effectiveness and robustness of the proposed method is confirmed.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Chen ◽  
Peng Zhan ◽  
Luhui Cao ◽  
Xueqing Li

A multiview synthetic aperture radar (SAR) target recognition with discrimination and correlation analysis is proposed in this study. The multiple views are first prescreened by a support vector machine (SVM) to select out those highly discriminative ones. These views are then clustered into several view sets, in which images share high correlations. The joint sparse representation (JSR) is adopted to classify SAR images in each view set, and all the decisions from different view sets are fused using a linear weighting strategy. The proposed method makes more sufficient analysis of the multiview SAR images so the recognition performance can be effectively enhanced. To test the proposed method, experiments are set up based on the moving and stationary target acquisition and recognition (MSTAR) dataset. The results show that the proposed method could achieve superior performance under different situations over some compared methods.



2019 ◽  
Vol 11 (22) ◽  
pp. 2676 ◽  
Author(s):  
Meiting Yu ◽  
Sinong Quan ◽  
Gangyao Kuang ◽  
Shaojie Ni

Synthetic aperture radar (SAR) target recognition under extended operating conditions (EOCs) is a challenging problem due to the complex application environment, especially for insufficient target variations and corrupted SAR images in the training samples. This paper proposes a new strategy to solve these problems for target recognition. The SAR images are firstly characterized by multi-scale components of monogenic signal. The generated monogenic features are decomposed to learn a class dictionary and a shared dictionary, which represent the possible intraclass variations information and the common information, respectively. Moreover, a sparse representation of the class dictionary and a dense representation of the shared dictionary are jointly employed to represent a query sample for classification. The validity of the proposed strategy is demonstrated with multiple comparative experiments on moving and stationary target acquisition and recognition (MSTAR) database.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liqun Yu ◽  
Lu Wang ◽  
Yongxing Xu

For the synthetic aperture radar (SAR) target recognition problem, a method combining multifeature joint classification and adaptive weighting is proposed with innovations in fusion strategies. Zernike moments, nonnegative matrix factorization (NMF), and monogenic signal are employed as the feature extraction algorithms to describe the characteristics of original SAR images with three corresponding feature vectors. Based on the joint sparse representation model, the three types of features are jointly represented. For the reconstruction error vectors from different features, an adaptive weighting algorithm is used for decision fusion. That is, the weights are adaptively obtained under the framework of linear fusion to achieve a good fusion result. Finally, the target label is determined according to the fused error vector. Experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset under the standard operating condition (SOC) and four extended operating conditions (EOC), i.e., configuration variants, depression angle variances, noise interference, and partial occlusion. The results verify the effectiveness and robustness of the proposed method.



Author(s):  
Zhenyu Zhang ◽  

This paper proposes a method using joint classification of monogenic components with discrimination analysis for target recognition in synthetic aperture radar (SAR) images. Three monogenic components, namely, phase, amplitude, and orientation, are extracted from the original image and classified by joint sparse representation for target recognition. Considering that the three components may have different discrimination capabilities for different operating conditions, the discrimination analysis is incorporated into the classification scheme. The components with low discriminability are not used in the joint classification. Afterwards, those discriminative components for a certain condition are classified to determine the target type. Experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) to evaluate the performance of the proposed method.



2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lei Lei ◽  
Dongen Guo ◽  
Zhihui Feng

This paper proposes a synthetic aperture radar (SAR) image target recognition method using multiple views and inner correlation analysis. Due to the azimuth sensitivity of SAR images, the inner correlation between multiview images participating in recognition is not stable enough. To this end, the proposed method first clusters multiview SAR images based on image correlation and nonlinear correlation information entropy (NCIE) in order to obtain multiple view sets with strong internal correlations. For each view set, the multitask sparse representation is used to reconstruct the SAR images in it to obtain high-precision reconstructions. Finally, the linear weighting method is used to fuse the reconstruction errors from different view sets and the target category is determined according to the fusion error. In the experiment, the tests are conducted based on the MSTAR dataset, and the results validate the effectiveness of the proposed method.



2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Junhua Wang ◽  
Yuan Jiang

For the problem of synthetic aperture radar (SAR) image target recognition, a method via combination of multilevel deep features is proposed. The residual network (ResNet) is used to learn the multilevel deep features of SAR images. Based on the similarity measure, the multilevel deep features are clustered and several feature sets are obtained. Then, each feature set is characterized and classified by the joint sparse representation (JSR), and the corresponding output result is obtained. Finally, the results of different feature sets are combined using the weighted fusion to obtain the target recognition results. The proposed method in this paper can effectively combine the advantages of ResNet and JSR in feature extraction and classification and improve the overall recognition performance. Experiments and analysis are carried out on the MSTAR dataset with rich samples. The results show that the proposed method can achieve superior performance for 10 types of target samples under the standard operating condition (SOC), noise interference, and occlusion conditions, which verifies its effectiveness.



2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hongqiao Wang ◽  
Yanning Cai ◽  
Guangyuan Fu ◽  
Shicheng Wang

Aiming at the multiple target recognition problems in large-scene SAR image with strong speckle, a robust full-process method from target detection, feature extraction to target recognition is studied in this paper. By introducing a simple 8-neighborhood orthogonal basis, a local multiscale decomposition method from the center of gravity of the target is presented. Using this method, an image can be processed with a multilevel sampling filter and the target’s multiscale features in eight directions and one low frequency filtering feature can be derived directly by the key pixels sampling. At the same time, a recognition algorithm organically integrating the local multiscale features and the multiscale wavelet kernel classifier is studied, which realizes the quick classification with robustness and high accuracy for multiclass image targets. The results of classification and adaptability analysis on speckle show that the robust algorithm is effective not only for the MSTAR (Moving and Stationary Target Automatic Recognition) target chips but also for the automatic target recognition of multiclass/multitarget in large-scene SAR image with strong speckle; meanwhile, the method has good robustness to target’s rotation and scale transformation.



2021 ◽  
Vol 13 (20) ◽  
pp. 4021
Author(s):  
Lan Du ◽  
Lu Li ◽  
Yuchen Guo ◽  
Yan Wang ◽  
Ke Ren ◽  
...  

Usually radar target recognition methods only use a single type of high-resolution radar signal, e.g., high-resolution range profile (HRRP) or synthetic aperture radar (SAR) images. In fact, in the SAR imaging procedure, we can simultaneously obtain both the HRRP data and the corresponding SAR image, as the information contained within them is not exactly the same. Although the information contained in the HRRP data and the SAR image are not exactly the same, both are important for radar target recognition. Therefore, in this paper, we propose a novel end-to-end two stream fusion network to make full use of the different characteristics obtained from modeling HRRP data and SAR images, respectively, for SAR target recognition. The proposed fusion network contains two separated streams in the feature extraction stage, one of which takes advantage of a variational auto-encoder (VAE) network to acquire the latent probabilistic distribution characteristic from the HRRP data, and the other uses a lightweight convolutional neural network, LightNet, to extract the 2D visual structure characteristics based on SAR images. Following the feature extraction stage, a fusion module is utilized to integrate the latent probabilistic distribution characteristic and the structure characteristic for the reflecting target information more comprehensively and sufficiently. The main contribution of the proposed method consists of two parts: (1) different characteristics from the HRRP data and the SAR image can be used effectively for SAR target recognition, and (2) an attention weight vector is used in the fusion module to adaptively integrate the different characteristics from the two sub-networks. The experimental results of our method on the HRRP data and SAR images of the MSTAR and civilian vehicle datasets obtained improvements of at least 0.96 and 2.16%, respectively, on recognition rates, compared with current SAR target recognition methods.



Sign in / Sign up

Export Citation Format

Share Document