scholarly journals Weighted Reconstruction and Improved Eigenclass Combination Method for the Detection of Bearing Faults

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhengyu Du ◽  
Jie Ma ◽  
Chao Ma ◽  
Min Huang ◽  
Weiwei Sun

Aiming at the difficulty of extracting and classifying early bearing faults, a fault diagnosis method based on weighted average time-varying filtering empirical mode decomposition and improved eigenclass is proposed in this paper. Firstly, the bearing fault signal is decomposed into a series of intrinsic mode functions by the signal decomposition method, and the amplitude of the component is modulated by the weighted average method to enhance the fault impulse component. Then, the fractional Fourier transform is used to filter the reconstructed signal. Regarding classification issues, the eigenclass classifier is optimized by the IDE method that can be used for feature dimensionality reduction. Finally, the optimal features are selected and input into the IDE-EigenClass model. The experimental results show that the bearing fault diagnosis method proposed in this paper has higher accuracy and stability than the traditional PNN, SVM, BP, and other methods.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Chen ◽  
Xin-Cong Zhou ◽  
Jun-Qiang Fang ◽  
Peng-fei Zheng ◽  
Jun Wang

A gear transmission system is a complex nonstationary and nonlinear time-varying coupling system. When faults occur on gear system, it is difficult to extract the fault feature. In this paper, a novel fault diagnosis method based on ensemble empirical mode decomposition (EEMD) and Deep Briefs Network (DBN) is proposed to treat the vibration signals measured from gearbox. The original data is decomposed into a set of intrinsic mode functions (IMFs) using EEMD, and then main IMFs were chosen for reconstructed signal to suppress abnormal interference from noise. The reconstructed signals were regarded as input of DBN to identify gearbox working states and fault types. To verify the effectiveness of the EEMD-DBN in detecting the faults, a series of gear fault simulate experiments at different states were carried out. Results showed that the proposed method which coupled EEMD and DBN can improve the accuracy of gear fault identification and it is capable of applying to fault diagnosis in practical application.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3510 ◽  
Author(s):  
Zhijian Wang ◽  
Junyuan Wang ◽  
Wenhua Du

Variational Mode Decomposition (VMD) can decompose signals into multiple intrinsic mode functions (IMFs). In recent years, VMD has been widely used in fault diagnosis. However, it requires a preset number of decomposition layers K and is sensitive to background noise. Therefore, in order to determine K adaptively, Permutation Entroy Optimization (PEO) is proposed in this paper. This algorithm can adaptively determine the optimal number of decomposition layers K according to the characteristics of the signal to be decomposed. At the same time, in order to solve the sensitivity of VMD to noise, this paper proposes a Modified VMD (MVMD) based on the idea of Noise Aided Data Analysis (NADA). The algorithm first adds the positive and negative white noise to the original signal, and then uses the VMD to decompose it. After repeated cycles, the noise in the original signal will be offset to each other. Then each layer of IMF is integrated with each layer, and the signal is reconstructed according to the results of the integrated mean. MVMD is used for the final decomposition of the reconstructed signal. The algorithm is used to deal with the simulation signals and measured signals of gearbox with multiple fault characteristics. Compared with the decomposition results of EEMD and VMD, it shows that the algorithm can not only improve the signal to noise ratio (SNR) of the signal effectively, but can also extract the multiple fault features of the gear box in the strong noise environment. The effectiveness of this method is verified.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Xiong ◽  
Shulin Tian ◽  
Chenglin Yang

This paper presents a novel fault diagnosis method for analog circuits using ensemble empirical mode decomposition (EEMD), relative entropy, and extreme learning machine (ELM). First, nominal and faulty response waveforms of a circuit are measured, respectively, and then are decomposed into intrinsic mode functions (IMFs) with the EEMD method. Second, through comparing the nominal IMFs with the faulty IMFs, kurtosis and relative entropy are calculated for each IMF. Next, a feature vector is obtained for each faulty circuit. Finally, an ELM classifier is trained with these feature vectors for fault diagnosis. Via validating with two benchmark circuits, results show that the proposed method is applicable for analog fault diagnosis with acceptable levels of accuracy and time cost.


Author(s):  
Hongchuan Cheng ◽  
Yimin Zhang ◽  
Wenjia Lu ◽  
Zhou Yang

To obtain the fault features of the bearing, a method based on variational mode decomposition (VMD), singular value decomposition (SVD) is proposed for fault diagnosis by Gath–Geva (G–G) fuzzy clustering. Firstly, the original signals are decomposed into mode components by VMD accurately and adaptively, and the spatial condition matrix (SCM) can be obtained. The SCM utilized as the reconstruction matrix of SVD can inherit the time delay parameter and embedded dimension automatically, and then the first three singular values from the SCM are used as fault eigenvalues to decrease the feature dimension and improve the computational efficiency. G–G clustering, one of the unsupervised machine learning fuzzy clustering techniques, is employed to obtain the clustering centers and membership matrices under various bearing faults. Finally, Hamming approach degree between the test samples and the known cluster centers is calculated to realize the bearing fault identification. By comparing with EEMD and EMD based on a recursive decomposition algorithm, VMD adopts a novel completely nonrecursive method to avoid mode mixing and end effects. Furthermore, the IMF components calculated from VMD include large amounts of fault information. G–G clustering is not limited by the shapes, sizes and densities in comparison with other clustering methods. VMD and G–G clustering are more suitable for fault diagnosis of the bearing system, and the results of experiment and engineering analysis show that the proposed method can diagnose bearing faults accurately and effectively.


Author(s):  
Yaguo Lei ◽  
Zongyao Liu ◽  
Julien Ouazri ◽  
Jing Lin

Ensemble empirical mode decomposition (EEMD) represents a valuable aid in empirical mode decomposition (EMD) and has been widely used in fault diagnosis of rolling element bearings. However, the intrinsic mode functions (IMFs) generated by EEMD often contain residual noise. In addition, adding different white Gaussian noise to the signal to be analyzed probably produces a different number of IMFs, and different number of IMFs makes difficult the averaging. To alleviate these two drawbacks, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was previously presented. Utilizing the advantages of CEEMDAN in extracting weak characteristics from noisy signals, a new fault diagnosis method of rolling element bearings based on CEEMDAN is proposed. With this method, a particular noise is added at each stage and after each IMF extraction, a unique residue is computed. In this way, this method solves the problem of the final averaging and obtains IMFs with less noise. A simulated signal is used to illustrate the effectiveness of the proposed method, and the decomposition results show that the method obtains more accurate IMFs than the EEMD. To further demonstrate the proposed method, it is applied to fault diagnosis of locomotive rolling element bearings. The diagnosis results prove that the method based on CEEMDAN may reveal the fault characteristic information of rolling element bearings better.


2013 ◽  
Vol 694-697 ◽  
pp. 1160-1166
Author(s):  
Ke Heng Zhu ◽  
Xi Geng Song ◽  
Dong Xin Xue

This paper presents a fault diagnosis method of roller bearings based on intrinsic mode function (IMF) kurtosis and support vector machine (SVM). In order to improve the performance of kurtosis under strong levels of background noise, the empirical mode decomposition (EMD) method is used to decompose the bearing vibration signals into a number of IMFs. The IMF kurtosis is then calculated because of its sensitivity of impulses caused by faults. Subsequently, the IMF kurtosis values are treated as fault feature vectors and input into SVM for fault classification. The experimental results show the effectiveness of the proposed approach in roller bearing fault diagnosis.


2013 ◽  
Vol 347-350 ◽  
pp. 426-429 ◽  
Author(s):  
Wen Bin Zhang ◽  
Yan Jie Zhou ◽  
Jia Xing Zhu ◽  
Ya Song Pu

In this paper, a new rotor fault diagnosis method was proposed based on rank-order morphological filter, ensemble empirical mode decomposition (EEMD), sample entropy and grey relation degree. Firstly, the sampled data was de-noised by rank-order morphological filter. Secondly, the de-noised signal was decomposed into a finite number of stationary intrinsic mode functions (IMFs). Thirdly, some IMFs containing the most dominant fault information were calculated the sample entropy for four rotor conditions. Finally, the grey relation degree between the symptom set and standard fault set was calculated as the identification evidence for fault diagnosis. The practical results show that this method is quite effective in rotor fault diagnosis. Its suitable for on-line monitoring and diagnosis of rotating machinery.


Author(s):  
Xiaohui Chen ◽  
Lei Xiao ◽  
Xinghui Zhang ◽  
Zhenxiang Liu

Bearing failure is one of the most important causes of breakdown of rotating machinery. These failures can lead to catastrophic disasters or result in costly downtime. One of the key problems in bearing fault diagnosis is to detect the bearing fault as early as possible. This capability enables the operator to have enough time to do some preventive maintenance. Most papers investigate the bearing faults under rational assumption that bearings work individually. However, bearings are usually working as a part of complex systems like a gearbox. The fault signal of bearings can be easily masked by other vibration generated from gears and shafts. The proposed method separates bearing signals from other signals, and then the optimum frequency band which the bearing fault signal is prominent is determined by mean envelope Kurtosis. Subsequently, the envelope analysis is used to detect the bearing faults. Finally, two bearing fault experiments are used to validate the proposed method. Each experiment contains two bearing fault modes, inner race fault and outer race fault. The results demonstrate that the proposed method can detect the bearing fault easier than spectral Kurtosis and envelope Kurtosis.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1519 ◽  
Author(s):  
Dengyun Wu ◽  
Jianwen Wang ◽  
Hong Wang ◽  
Hongxing Liu ◽  
Lin Lai ◽  
...  

Bearing is a key component of satellite inertia actuators such as moment wheel assemblies (MWAs) and control moment gyros (CMGs), and its operating state is directly related to the performance and service life of satellites. However, because of the complexity of the vibration frequency components of satellite bearing assemblies and the small loading, normal running bearings normally present similar fault characteristics in long-term ground life experiments, which makes it difficult to judge the bearing fault status. This paper proposes an automatic fault diagnosis method for bearings based on a presented indicator called the characteristic frequency ratio. First, the vibration signals of various MWAs were picked up by the bearing vibration test. Then, the improved ensemble empirical mode decomposition (EEMD) method was introduced to demodulate the envelope of the bearing signals, and the fault characteristic frequencies of the vibration signals were acquired. Based on this, the characteristic frequency ratio for fault identification was defined, and a method for determining the threshold of fault judgment was further proposed. Finally, an automatic diagnosis process was proposed and verified by using different bearing fault data. The results show that the presented method is feasible and effective for automatic monitoring and diagnosis of bearing faults.


Author(s):  
Jing Tian ◽  
Yanting Ai ◽  
Ming Zhao ◽  
Chengwei Fei ◽  
Fengling Zhang

To reasonably process the complex signals and improve the diagnosis accuracy of inter-shaft bearing incipient faults, this paper develops wavelet energy spectrum exergy (WESE) and random forest (RF) (short for WESE-RF) method with respect to acoustic emission (AE) signals. Inter-shaft bearing faults, which contain inner race fault, outer race fault, rolling element faults and normal status under different measuring points and different rotational speeds, are simulated based on the test rig of inter-shaft bearings, to collect the AE signals of these faults. Regarding the AE signals of inter-shaft bearing faults, the WESE values, one signal feature, are extracted from an information exergy perspective, and are applied to structure feature vectors. The WESE values of these AE signals are regarded as the sample set which include the training samples subset used to establish the WESE-RF model of fault diagnosis and the test samples subset applied to test the effectiveness of the developed WESE-RF model. The investigation on the fault diagnosis of inter-shaft bearing demonstrates the fault diagnosis method with the WESE-RF has good generalization ability and high diagnostic accuracy of over 0.9 for inter-shaft bearing fault. The efforts of this paper provide a useful approach-based information exergy and wavelet energy spectrum for inter-shaft bearing fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document