scholarly journals Artificial Neural Network-Based Deep Learning Model for COVID-19 Patient Detection Using X-Ray Chest Images

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohammad Shorfuzzaman ◽  
Mehedi Masud ◽  
Hesham Alhumyani ◽  
Divya Anand ◽  
Aman Singh

The world is experiencing an unprecedented crisis due to the coronavirus disease (COVID-19) outbreak that has affected nearly 216 countries and territories across the globe. Since the pandemic outbreak, there is a growing interest in computational model-based diagnostic technologies to support the screening and diagnosis of COVID-19 cases using medical imaging such as chest X-ray (CXR) scans. It is discovered in initial studies that patients infected with COVID-19 show abnormalities in their CXR images that represent specific radiological patterns. Still, detection of these patterns is challenging and time-consuming even for skilled radiologists. In this study, we propose a novel convolutional neural network- (CNN-) based deep learning fusion framework using the transfer learning concept where parameters (weights) from different models are combined into a single model to extract features from images which are then fed to a custom classifier for prediction. We use gradient-weighted class activation mapping to visualize the infected areas of CXR images. Furthermore, we provide feature representation through visualization to gain a deeper understanding of the class separability of the studied models with respect to COVID-19 detection. Cross-validation studies are used to assess the performance of the proposed models using open-access datasets containing healthy and both COVID-19 and other pneumonia infected CXR images. Evaluation results show that the best performing fusion model can attain a classification accuracy of 95.49% with a high level of sensitivity and specificity.

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1423
Author(s):  
Juan Eduardo Luján-García ◽  
Marco Antonio Moreno-Ibarra ◽  
Yenny Villuendas-Rey ◽  
Cornelio Yáñez-Márquez

As of the end of 2019, the world suffered from a disease caused by the SARS-CoV-2 virus, which has become the pandemic COVID-19. This aggressive disease deteriorates the human respiratory system. Patients with COVID-19 can develop symptoms that belong to the common flu, pneumonia, and other respiratory diseases in the first four to ten days after they have been infected. As a result, it can cause misdiagnosis between patients with COVID-19 and typical pneumonia. Some deep-learning techniques can help physicians to obtain an effective pre-diagnosis. The content of this article consists of a deep-learning model, specifically a convolutional neural network with pre-trained weights, which allows us to use transfer learning to obtain new retrained models to classify COVID-19, pneumonia, and healthy patients. One of the main findings of this article is that the following relevant result was obtained in the dataset that we used for the experiments: all the patients infected with SARS-CoV-2 and all the patients infected with pneumonia were correctly classified. These results allow us to conclude that the proposed method in this article may be useful to help physicians decide the diagnoses related to COVID-19 and typical pneumonia.


Author(s):  
Nicole P. Mugova ◽  
Mohammed M. Abdelsamea ◽  
Mohamed M. Gaber

Covid-19 is a growing issue in society and there is a need for resources to manage the disease. This paper looks at studying the effect of class decomposition in our previously proposed deep Convolutional Neural Network, called DeTraC (Decompose, Transfer and Compose). DeTraC has the ability to robustly detect and predict Covid-19 from chest X-ray images. The experimental results showed that changing the number of clusters affected the performance of DeTraC and influenced the accuracy of the model. As the number of clusters increased, the accuracy decreased for the shallow tuning mode but increased for the deep tuning mode. This shows the importance of using suitable hyperparameter settings in order to get the best results from a deep learning model. The highest accuracy obtained, in this study, was 98.33% from the deep tuning model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Isabella Castiglioni ◽  
Davide Ippolito ◽  
Matteo Interlenghi ◽  
Caterina Beatrice Monti ◽  
Christian Salvatore ◽  
...  

Abstract Background We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy. Methods We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard. Results At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74–0.81), 0.82 specificity (95% CI 0.78–0.85), and 0.89 area under the curve (AUC) (95% CI 0.86–0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% CI 0.72–0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73–0.87), and 0.81 AUC (95% CI 0.73–0.87). Radiologists’ reading obtained 0.63 sensitivity (95% CI 0.52–0.74) and 0.78 specificity (95% CI 0.61–0.90) in Centre 1 and 0.64 sensitivity (95% CI 0.52–0.74) and 0.86 specificity (95% CI 0.71–0.95) in Centre 2. Conclusions This preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1002
Author(s):  
Mohammad Khishe ◽  
Fabio Caraffini ◽  
Stefan Kuhn

This article proposes a framework that automatically designs classifiers for the early detection of COVID-19 from chest X-ray images. To do this, our approach repeatedly makes use of a heuristic for optimisation to efficiently find the best combination of the hyperparameters of a convolutional deep learning model. The framework starts with optimising a basic convolutional neural network which represents the starting point for the evolution process. Subsequently, at most two additional convolutional layers are added, at a time, to the previous convolutional structure as a result of a further optimisation phase. Each performed phase maximises the the accuracy of the system, thus requiring training and assessment of the new model, which gets gradually deeper, with relevant COVID-19 chest X-ray images. This iterative process ends when no improvement, in terms of accuracy, is recorded. Hence, the proposed method evolves the most performing network with the minimum number of convolutional layers. In this light, we simultaneously achieve high accuracy while minimising the presence of redundant layers to guarantee a fast but reliable model. Our results show that the proposed implementation of such a framework achieves accuracy up to 99.11%, thus being particularly suitable for the early detection of COVID-19.


2021 ◽  
Author(s):  
Liangrui Pan ◽  
boya ji ◽  
Xiaoqi wang ◽  
shaoliang peng

The use of chest X-ray images (CXI) to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) caused by Coronavirus Disease 2019 (COVID-19) is life-saving important for both patients and doctors. This research proposed a multi-channel feature deep neural network algorithm to screen people infected with COVID-19. The algorithm integrates data oversampling technology and a multi-channel feature deep neural network model to carry out the training process in an end-to-end manner. In the experiment, we used a publicly available CXI database with 10,192 Normal, 6012 Lung Opacity (Non-COVID lung infection), and 1345 Viral Pneumonia images. Compared with traditional deep learning models (Densenet201, ResNet50, VGG19, GoogLeNet), the MFDNN model obtains an average test accuracy of 93.19% in all data. Furthermore, in each type of screening, the precision, recall, and F1 Score of the MFDNN model are also better than traditional deep learning networks. Secondly, compared with the latest CoroDet model, the MFDNN algorithm is 1.91% higher than the CoroDet model in the experiment of detecting the four categories of COVID19 infected persons. Finally, our experimental code will be placed at https://github.com/panliangrui/covid19.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Vina Ayumi ◽  
Ida Nurhaida

Deteksi dini terhadap adanya indikasi pasien dengan gejala COVID-19 perlu dilakukan untuk mengurangi penyebaran virus. Salah satu cara yang dapat dilakukan untuk mendeteksi virus COVID-19 adalah dengan cara mempelajari citra chest x-ray pasien dengan gejala Covid-19. Citra chest x-ray dianggap mampu menggambarkan kondisi paru-paru pasien COVID-19 sebagai alat bantu untuk diagnosa klinis. Penelitian ini mengusulkan pendekatan deep learning berbasis convolutional neural network (CNN) untuk klasifikasi gejala COVID-19 melalui citra chest X-Ray. Evaluasi performa metode yang diusulkan akan menggunakan perhitungan accuracy, precision, recall, f1-score, dan cohens kappa. Penelitian ini menggunakan model CNN dengan 2 lapis layer convolusi dan maxpoling serta fully-connected layer untuk output. Parameter-parameter yang digunakan diantaranya batch_size = 32, epoch = 50, learning_rate = 0.001, dengan optimizer yaitu Adam. Nilai akurasi validasi (val_acc) terbaik diperoleh pada epoch ke-49 dengan nilai 0.9606, nilai loss validasi (val_loss) 0.1471, akurasi training (acc) 0.9405, dan loss training (loss) 0.2558.


Sign in / Sign up

Export Citation Format

Share Document