scholarly journals Eliminating the Effect of Common-Mode Voltage on an Open-End Winding PMSM Based on Model Predictive Torque Control

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiming Lin ◽  
Bicheng Lei ◽  
Lingwei Wu ◽  
Pan Mei

In the open-end winding permanent magnet synchronous motor (OEW-PMSM) with common DC link, the common-mode voltage (CMV) will cause leakage current and zero-sequence current, which will lead to the decrease in the system life and efficiency. To solve this problem, the loop characteristics of leakage current and zero-sequence current were analyzed, and the condition for eliminating the leakage current and the zero-sequence current was deduced. Then, the CMV of the voltage vectors for the OEW-PMSM system was calculated, and the appropriate voltage vectors satisfying the conditions were selected to form the control vector sets. Combined with the model predictive torque control (MPTC), a cost function without the weight factor was proposed. The voltage vector sets were predicted by the cost function. The optimal voltage vectors were selected to control the OEW-PMSM, which can eliminate the leakage current and the zero-sequence current caused by the CMV. The effectiveness of the proposed method was verified by the simulation results.

Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 769 ◽  
Author(s):  
Guozheng Zhang ◽  
Chen Chen ◽  
Xin Gu ◽  
Zhiqiang Wang ◽  
Xinmin Li

In conventional model predictive control, the dimensions of the control variables are different from each other, which makes adjusting the weighted factors in the cost function complicated. This issue can be solved by adopting the model predictive flux control. However, the performance of the electromagnetic torque is affected by the change of the cost function. A novel model predictive torque control of the interior permanent magnet synchronous motor is presented in this paper, and the cost function involving the excitation torque and reluctance torque is established. Combined with the model predictive flux control and discrete space vector modulation, the current ripple and torque ripple are reduced. The performance of torque under an overload condition is superior to model predictive flux control. The effectiveness of the proposed algorithm is verified by the simulation and experimental results.


2021 ◽  
Vol 72 (1) ◽  
pp. 1-11
Author(s):  
Chung Mai-Van ◽  
Sang Duong-Minh ◽  
Duc Tran-Huu ◽  
Bao Binh-Pho ◽  
Phuong Vu

Abstract Finite control set ModelPredictive control (FCS-MPC) with the principle of considering all voltage vectors to find the optimal voltage vector for multilevel inverter in a very small sampling cycle is hardly feasible because there is no modulation part, the implementation of optimizing common-mode voltage and switching number for the multilevel inverter should be performed in the cost function. To solve the above problem, this paper proposes an improved method of model predictive current control selecting 19 adjacent voltage vectors and using weighting coefficients for common-mode voltage elimination and switching optimization. By using a discrete-time model of the system to predict the future value of the current for the voltage vector in the previous sampling cycle and its 18 adjacent voltage vectors, the one that minimizes a cost function will be selected. Thus, in a multilevel inverter with any number of levels, the cost function is performed only 19 times in a sampling cycle. The computation on FPGA allows 19 calculations of the cost function to be performed in parallel, so the executing time is very small. The feasibility of the proposed algorithm is verified by simulation model on MATLAB-simulink software and the experimental 11-level cascaded H-bridge multilevel inverter model.


2015 ◽  
Vol 26 (1) ◽  
pp. 20-24
Author(s):  
Atanda K. Raji ◽  
Mohamed T. E. Kahn

The problems of increasing electricity demand by the unabated population and economy growth can be solved by employing sustainable distributed generation technologies. Convectional primary energy sources such as coal, liquid hydrocarbons’ and natural gasses create environmental degradation and energy security problems. Even though the cost of solar energy is zero, the same cannot be said of a solar energy system. The system cost especially the initial capital investment has been hindering the rapid deployment of solar energy systems. One way of reducing the system cost of a solar energy system is to look into the constituent components and see where cost can be reduced without compromising the system efficiency and human safety. Eliminating the isolation transformer reduces the cost and increases the system overall efficiency. However, the galvanic connection between the PV array and the utility grid creates a safety problem for people and system equipment. We present a simplified model for the investigation of the common mode voltage and ground leakage current that can lead to electromagnetic interference. The leakage current level is used for the determination of the suitability of the investigated PV inverter topology for grid connection without isolation transformer.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 466
Author(s):  
Pawel Szczepankowski ◽  
Natalia Strzelecka ◽  
Enrique Romero-Cadaval

This article presents three variants of the Pulse Width Modulation (PWM) for the Double Square Multiphase type Conventional Matrix Converters (DSM-CMC) supplying loads with the open-end winding. The first variant of PWM offers the ability to obtain zero value of the common-mode voltage at the load’s terminals and applies only six switches within the modulation period. The second proposal archives for less Total Harmonic Distortion (THD) of the generated load voltage. The third variant of modulation concerns maximizing the voltage transfer ratio, minimizing the number of switching, and the common-mode voltage cancellation. The discussed modulations are based on the concept of sinusoidal voltage quadrature signals, which can be an effective alternative to the classic space-vector approach. In the proposed approach, the geometrical arrangement of basic vectors needed to synthesize output voltages is built from the less number of vectors, which is equal to the number of the matrix converter’s terminals. The PWM duty cycle computation is performed using only a second-order determinant of the voltages coordinate matrix without using trigonometric functions. A new approach to the PWM duty cycles computing and the load voltage synthesis by 5 × 5 and 12 × 12 topologies has been verified using the PSIM simulation software.


Sign in / Sign up

Export Citation Format

Share Document