scholarly journals Protective Effect of Penetratin Analogue-Tagged SOD1 on Cisplatin-Induced Nephrotoxicity through Inhibiting Oxidative Stress and JNK/p38 MAPK Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiao-lu Wang ◽  
Liang Wang ◽  
Fo-lan Lin ◽  
Si-si Li ◽  
Ting-xuan Lin ◽  
...  

Copper/zinc superoxide dismutase (SOD1) can clear cisplatin- (CP-) induced excessive reactive oxygen species (ROS), but exogenous SOD1 cannot enter cells because of its low biomembrane permeability. Cell-penetrating peptides (CPPs) can rapidly cross plasma membranes. This study is aimed at identifying an efficient and stable CPP-SOD1 and investigating its effects on CP-induced nephrotoxicity. We recombined SOD1 with 14 different CPPs and purified them using an NTA-Ni2+ column. In in vitro experiments, CPPs-SOD1 cell membrane penetration ability and JNK/p38 MAPK signaling pathway were evaluated using Western blotting. ROS production, mitochondrial membrane potential (MMP), and cell apoptosis were determined using flow cytometry and immunofluorescence staining in VERO and HK-2 cells. For in vivo experiments, mice were administered PSF-SOD1 for 2 h before cotreatment with a single CP injection for an additional 4 days. Blood and kidney samples were collected for renal function assessment (creatinine, urea nitrogen, histopathology, TUNEL assay, and JNK/p38 MAPK signaling pathway). Compared with TAT-SOD1, we found that PSF-SOD1 is more efficient at crossing the cell membrane and is stable after transduction into cells. Pretreatment with PSF-SOD1 inhibited CP-induced apoptosis, ROS generation, and JNK/p38 MAPK activation and restored CP-induced MMP loss in VERO and HK-2 kidney cells. Treatment of mice with PSF-SOD1 inhibited CP-induced serum creatinine, blood urea nitrogen elevation, and JNK/p38 MAPK activation. H&E staining and TUNEL assay indicated that kidney tissue damage was alleviated following PSF-SOD1 pretreatment. Overall, PSF-SOD1 ameliorated CP-induced renal damage by partially reducing oxidative stress and cell apoptosis by regulating JNK/p38 MAPK signaling pathway and might be a better cytoprotective agent than TAT-SOD1.

2020 ◽  
Vol 11 (9) ◽  
pp. 8133-8140
Author(s):  
Yalei Cui ◽  
Boshuai Liu ◽  
Xiao Sun ◽  
Zidan Li ◽  
Yanyan Chen ◽  
...  

Alfalfa saponins defend against oxidative stress by enhancing the antioxidant system and further inhibit cell apoptosis by activating the MAPK signaling pathway.


Aging ◽  
2020 ◽  
Vol 12 (13) ◽  
pp. 13005-13022
Author(s):  
Xue Liang ◽  
Lijun Wang ◽  
Manman Wang ◽  
Zhaohong Liu ◽  
Xing Liu ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yadi Wang ◽  
Yang Zhang ◽  
Bo Sun ◽  
Qing Tong ◽  
Liqun Ren

We investigated the potential protective effect of rutinum (RUT) against pirarubicin- (THP-) induced cardiotoxicity. THP was used to induce toxicity in rat H9c2 cardiomyoblasts. Positive control cells were pretreated with a cardioprotective agent dexrazoxane (DZR) prior to treatment with THP. Some of the cells were preincubated with RUT and a p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, both individually and in combination, prior to THP exposure. At a dose range of 30–70 μM, RUT significantly prevented THP-induced reduction in cell viability; the best cardioprotective effect was observed at a dose of 50 μM. Administration of RUT and SB203580, both individually as well as in combination, suppressed the elevation of intracellular ROS, inhibited cell apoptosis, and reversed the THP-induced upregulation of TGF-β1, p-p38 MAPK, cleaved Caspase-9, Caspase-7, and Caspase-3. A synergistic effect was observed on coadministration of RUT and SB203580. RUT protected against THP-induced cardiotoxicity by inhibition of ROS generation and suppression of cell apoptosis. The cardioprotective effect of RUT appears to be associated with the modulation of the TGF-β1-p38 MAPK signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Liang ◽  
Xin Gu ◽  
Hai Ji Shen ◽  
Yu Heng Shi ◽  
Yao Li ◽  
...  

AimsObstructive sleep apnea (OSA) is a risk factor for steroid-resistant (SR) asthma. However, the underlying mechanism is not well defined. This study aimed to investigate how chronic intermittent hypoxia (CIH), the main pathophysiology of OSA, influenced the effects of glucocorticoids (GCs) on asthma.Main MethodsThe effects of dexamethasone (Dex) were determined using the ovalbumin (OVA)-challenged mouse model of asthma and transforming growth factor (TGF)-β treated airway smooth muscle cells (ASMCs), with or without CIH. The p38 MAPK signaling pathway activity was then detected in the mouse (n = 6) and ASMCs models (n = 6), which were both treated with the p38 MAPK inhibitor SB239063.Key FindingsUnder CIH, mouse pulmonary resistance value, inflammatory cells in bronchoalveolar lavage fluid (BALF), and inflammation scores increased in OVA-challenged combined with CIH exposure mice compared with OVA-challenged mice (p < 0.05). These indicators were similarly raised in the OVA + CIH + Dex group compared with the OVA + Dex group (P < 0.05). CIH exposure enhanced the activation of the p38 MAPK pathway, oxidative stress injury, and the expression of NF-κB both in lung tissue and ASMCs, which were reversed by treatment with Dex and SB239063. In the in vitro study, treatment with Dex and SB239063 decreased ASMCs proliferation induced by TGF-β combined with CIH and suppressed activation of the p38 MAPK pathway, oxidative stress injury, and NF-κB nuclear transcription (p < 0.05).SignificanceThese results indicated that CIH decreased GC sensitivity by activating the p38 MAPK signaling pathway.


Redox Report ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 1-8
Author(s):  
Yalei Cui ◽  
Fen Li ◽  
Xiaoyan Zhu ◽  
Junying Xu ◽  
Abaidullah Muhammad ◽  
...  

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Kai Li ◽  
Shunshun Zhong ◽  
Yanyun Luo ◽  
Dingfeng Zou ◽  
Mengzhen Li ◽  
...  

Abstract Spermatogenesis is the complex process of male germline development and requires coordinated interactions by multiple gene products that undergo strict developmental regulations. Increasing evidence has suggested that a number of long noncoding RNAs (lncRNAs) may function as important regulatory molecules in various physiological and pathological processes by binding to specific proteins. Here, we identified a subset of QKI-5-binding lncRNAs in the mouse testis through the integrated analyses of RNA immunoprecipitation (RIP)-microarray and biological verification. Among the lncRNAs, we revealed that NONMMUT074098.2 (Lnc10), which was highly expressed in the spermatogonia and spermatocytes of the testis, interacted with QKI-5. Furthermore, Lnc10 depletion promoted germ cell apoptosis via the activation of p38 MAPK, whereas the simultaneous knockdown of QKI-5 could rescue the apoptotic phenotype and the activation of p38 MAPK, which were induced by the loss of Lnc10. These data indicated that the Lnc10-QKI-5 interaction was associated with the regulatory roles of QKI-5 and that the Lnc10-QKI-5 interaction inhibited the regulation of QKI-5 on the downstream p38 MAPK signaling pathway. Additionally, we functionally characterized the biological roles of Lnc10 and found that the knockdown of Lnc10 promoted the apoptosis of spermatogenic cells in vivo; this suggested that Lnc10 had an important biological role in mouse spermatogenesis. Thus, our study provides a potential strategy to investigate the biological significance of lncRNA-RBP interactions during male germline development.


Sign in / Sign up

Export Citation Format

Share Document