scholarly journals MHD Flow of Thermally Radiative Maxwell Fluid Past a Heated Stretching Sheet with Cattaneo–Christov Dual Diffusion

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
K. Loganathan ◽  
Nazek Alessa ◽  
Ngawang Namgyel ◽  
T. S. Karthik

This study explains the impression of MHD Maxwell fluid with the presence of thermal radiation on a heated surface. The heat and mass transmission analysis is carried out with the available of Cattaneo–Christov dual diffusion. The derived PDE equations are renovated into ODE equations with the use of similarity variables. HAM technique is implemented for finding the solution. The importance of physical parameters of fluid velocity, temperature, concentration, skin friction, and heat and mass transfer rates are illustrated in graphs. We found that the fluid velocity declines with the presence of the magnetic field parameter. On the contrary, the liquid temperature enhances by increasing the radiation parameter. In addition, the fluid velocity is low, and temperature and concentration are high in Maxwell fluid compared to the viscous liquid.

2011 ◽  
Vol 66 (5) ◽  
pp. 321-328
Author(s):  
Gözde Deǧer ◽  
Mehmet Pakdemirli ◽  
Yiǧit Aksoy

Steady state boundary layer equations of an upper convected Maxwell fluid with magnetohydrodynamic (MHD) flow are considered. The strength of the magnetic field is assumed to be variable with respect to the location. Using Lie group theory, group classification of the equations with respect to the variable magnetic field is performed. General boundary conditions including stretching sheet and injection are taken. Restrictions imposed by the boundary conditions on the symmetries are discussed. Special functional forms of boundary conditions for which similarity solutions may exist are derived. Using the symmetries, similarity solutions are presented for the case of constant strength magnetic field. Stretching sheet solutions with or without injection are presented. Effects of physical parameters on the solutions are depicted.


2019 ◽  
Vol 8 (1) ◽  
pp. 744-754 ◽  
Author(s):  
Sumit Gupta ◽  
Sandeep Gupta

Abstract Current article is devoted with the study of MHD 3D flow of Oldroyd B type nanofluid induced by bi-directional stretching sheet. Expertise similarity transformation is confined to reduce the governing partial differential equations into ordinary nonlinear differential equations. These dimensionless equations are then solved by the Differential Transform Method combined with the Padé approximation (DTM-Padé). Dealings of the arising physical parameters namely the Deborah numbers β1 and β2, Prandtl number Pr, Brownian motion parameter Nb and thermophoresis parameter Nt on the fluid velocity, temperature and concentration profile are depicted through graphs. Also a comparative study between DTM and numerical method are presented by graph and other semi-analytical techniques through tables. It is envisage that the velocity profile declines with rising magnetic factor, temperature profile increases with magnetic parameter, Deborah number of first kind and Brownian motion parameter while decreases with Deborah number of second kind and Prandtl number. A comparative study also visualizes comparative study in details.


2019 ◽  
Vol 26 ◽  
pp. 62-83
Author(s):  
Tunde Abdulkadir Yusuf ◽  
Jacob Abiodun Gbadeyan

In this study the effect of entropy generation on two dimensional magnetohydrodynamic (MHD) flow of a Maxwell fluid over an inclined stretching sheet embedded in a non-Darcian porous medium with velocity slip and convective boundary condition is investigated. Darcy-Forchheimer based model was employed to describe the flow in the porous medium. The non-linear thermal radiation is also taken into account. Similarity transformation is used to convert the non-linear partial differential equations to a system of non-linear ordinary differential equations. The resulting transformed equations are then solved using the Homotopy analysis method (HAM). Influence of various physical parameters on the dimensionless velocity profile, temperature profile and entropy generation are shown graphically and discussed in detail while the effects of these physical parameters on velocity gradient and temperature gradient are aided with the help of Table. Furthermore, comparison of some limiting cases of this model was made with existing results. The results obtained are found to be in good agreement with previously published results. Moreover, increase in local inertial coefficient parameter is found to decrease the entropy generation rate.


2011 ◽  
Vol 8 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Ali J. Chamkha ◽  
M. F. Al-Amin ◽  
Abdelraheem Aly

This work is focused on the numerical solution of unsteady double-diffusive free convective flow along a vertical isothermal cylinder in the presence of a transverse magnetic field, first-order homogeneous chemical reaction, thermal radiation and Soret and Dufour effects. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are formulated and a numerical solution is obtained by using an explicit finite-difference scheme. The solutions at each time step have been found to reach the steady state solution properly. Representative results for the fluid velocity, temperature and solute concentration profiles as well as the local heat and mass transfer rates for various values of the physical parameters are displayed in both graphical and tabular forms. DOI: http://dx.doi.org/10.3329/jname.v8i1.7250


2013 ◽  
Vol 18 (4) ◽  
pp. 1087-1097
Author(s):  
R. Muthucumaraswamy ◽  
N. Dhanasekar ◽  
G. Easwara Prasad

Abstract An exact analysis of rotation effects on an unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of a transversely applied magnetic field is presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C’w. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing values of the magnetic field parameter or rotation parameter Ω.


2021 ◽  
Vol 10 (1) ◽  
pp. 128-145
Author(s):  
Amala Olkha ◽  
Amit Dadheech

The unsteady MHD flow of Powell-Eyring fluid with microorganisms due to permeable extending surface which is also inclined, embedded in porous media is acknwledged. We have considered variable fluid property such as variable viscosity, thermal conductivity. For this perspective relevant transformations are exercised to reduce the governing PDE’s corresponding to momentum energy, mass and microorganisms’ profiles to system of ODE’s which are of non-linear nature and are numerically evaluated by MATLAB algorithm using Runge-kutta technique. Tabular annotations including pictorial presentations are comprehensively used to analyse effects caused by physical parameters concerning velocity, energy, mass and microorganisms.The present analysis focuses the study of unsteady MHD slip flow of Powell-Eyring fluid with microorganisms over an inclined permeable stretching sheet with slip conditions which is not avalaible in open literature beforehand. Rising unsteady parameter (A) decreases skin friction coefficient and reverse impact is shown on local Sherwood, Nusselt, and motile microorganisms’ number.


2020 ◽  
Vol 9 (11) ◽  
pp. 9259-9271
Author(s):  
K.R. Babu ◽  
G. Narender ◽  
K. Govardhan

A two-dimensional stream of an magnetohydrodynamics (MHD) Eyring-Powell fluid on a stretching surface in the presence of thermal radiation, viscous dissipation and the Joule heating is analyzed. The flow model in the form of the Partial Differential Equations (PDEs) is transformed into a system of non-linear and coupled Ordinary Differential Equations (ODEs) by implementing appropriate similarity transformations. The resulting ordinary differential equations are solved numerically by the shooting technique with Adams-Moulton Method of fourth order. The numerical solution obtained for the velocity and temperature profiles has been presented through graphs for different choice of the physical parameters. The magnetic field is found to have a direct relation with the temperature profile and an inverse with the velocity profile. Increasing the thermal radiation, the temperature tends to rise.


Sign in / Sign up

Export Citation Format

Share Document