scholarly journals Multideep Feature Fusion Algorithm for Clothing Style Recognition

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yuhua Li ◽  
Zhiqiang He ◽  
Sunan Wang ◽  
Zicheng Wang ◽  
Wanwei Huang

In order to improve recognition accuracy of clothing style and fully exploit the advantages of deep learning in extracting deep semantic features from global to local features of clothing images, this paper utilizes the target detection technology and deep residual network (ResNet) to extract comprehensive clothing features, which aims at focusing on clothing itself in the process of feature extraction procedure. Based on that, we propose a multideep feature fusion algorithm for clothing image style recognition. First, we use the improved target detection model to extract the global area, main part, and part areas of clothing, which constitute the image, so as to weaken the influence of the background and other interference factors. Then, the three parts were inputted, respectively, to improve ResNet for feature extraction, which has been trained beforehand. The ResNet model is improved by optimizing the convolution layer in the residual block and adjusting the order of the batch-normalized layer and the activation layer. Finally, the multicategory fusion features were obtained by combining the overall features of the clothing image from the global area, the main part, to the part areas. The experimental results show that the proposed algorithm eliminates the influence of interference factors, makes the recognition process focus on clothing itself, greatly improves the accuracy of the clothing style recognition, and is better than the traditional deep residual network-based methods.

2021 ◽  
Vol 2078 (1) ◽  
pp. 012021
Author(s):  
Hongyang Zhao ◽  
Qiang Xie

Abstract In view of the fact that the traditional graph model method which only considers statistical features or general semantic features when extracting keywords from existing massive educational resources, lacks the function of mining and utilizing multi-factor semantic features, this paper proposes an improved TextRank-based algorithm for keyword extraction of educational resources. According to the characteristics of Chinese text and the shortcomings of traditional TextRank algorithm, the improved algorithm featuring multi-feature fusion is developed using the importance of words in the corpus, the location information in the text and the attributes of words. Experimental results show that this method has higher accuracy, recall rate, and F-measure value than traditional algorithms in the process of keyword extraction of educational resources, which improves the quality of keyword extraction and is beneficial to better utilization and management of educational resources.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhencong Li ◽  
Qin Yao ◽  
Wanzhi Ma

This paper firstly introduces the basic knowledge of music, proposes the detailed design of a music retrieval system based on the knowledge of music, and analyzes the feature extraction algorithm and matching algorithm by using the features of music. Feature extraction of audio data is the important research of this paper. In this paper, the main melody features, MFCC features, GFCC features, and rhythm features, are extracted from audio data and a feature fusion algorithm is proposed to achieve the fusion of GFCC features and rhythm features to form new features under the processing of principal component analysis (PCA) dimensionality reduction. After learning the main melody features, MFCC features, GFCC features, and rhythm features, based on the property that PCA dimensionality reduction can effectively reduce noise and improve retrieval efficiency, this paper proposes vector fusion by dimensionality reduction of GFCC features and rhythm features. The matching retrieval of audio features is an important task in music retrieval. In this paper, the DTW algorithm is chosen as the main algorithm for retrieving music. The classification retrieval of music is also achieved by the K-nearest neighbor algorithm. In this paper, after implementing the research and improvement of algorithms, these algorithms are integrated into the system to achieve audio preprocessing, feature extraction, feature postprocessing, and matching retrieval. This article uses 100 different kinds of MP3 format music as the music library and randomly selects 4 pieces each time, and it tests the system under different system parameters, recording duration, and environmental noise. Through the research of this paper, the efficiency of music retrieval is improved and theoretical support is provided for the design of music retrieval software integration system.


2021 ◽  
Vol 13 (11) ◽  
pp. 2207
Author(s):  
Fengcheng Ji ◽  
Dongping Ming ◽  
Beichen Zeng ◽  
Jiawei Yu ◽  
Yuanzhao Qing ◽  
...  

Aircraft is a means of transportation and weaponry, which is crucial for civil and military fields to detect from remote sensing images. However, detecting aircraft effectively is still a problem due to the diversity of the pose, size, and position of the aircraft and the variety of objects in the image. At present, the target detection methods based on convolutional neural networks (CNNs) lack the sufficient extraction of remote sensing image information and the post-processing of detection results, which results in a high missed detection rate and false alarm rate when facing complex and dense targets. Aiming at the above questions, we proposed a target detection model based on Faster R-CNN, which combines multi-angle features driven and majority voting strategy. Specifically, we designed a multi-angle transformation module to transform the input image to realize the multi-angle feature extraction of the targets in the image. In addition, we added a majority voting mechanism at the end of the model to deal with the results of the multi-angle feature extraction. The average precision (AP) of this method reaches 94.82% and 95.25% on the public and private datasets, respectively, which are 6.81% and 8.98% higher than that of the Faster R-CNN. The experimental results show that the method can detect aircraft effectively, obtaining better performance than mature target detection networks.


2020 ◽  
Vol 12 (3) ◽  
pp. 560
Author(s):  
Lifu Chen ◽  
Siyu Tan ◽  
Zhouhao Pan ◽  
Jin Xing ◽  
Zhihui Yuan ◽  
...  

The detection of airports from Synthetic Aperture Radar (SAR) images is of great significance in various research fields. However, it is challenging to distinguish the airport from surrounding objects in SAR images. In this paper, a new framework, multi-level and densely dual attention (MDDA) network is proposed to extract airport runway areas (runways, taxiways, and parking lots) in SAR images to achieve automatic airport detection. The framework consists of three parts: down-sampling of original SAR images, MDDA network for feature extraction and classification, and up-sampling of airports extraction results. First, down-sampling is employed to obtain a medium-resolution SAR image from the high-resolution SAR images to ensure the samples (500 × 500) can contain adequate information about airports. The dataset is then input to the MDDA network, which contains an encoder and a decoder. The encoder uses ResNet_101 to extract four-level features with different resolutions, and the decoder performs fusion and further feature extraction on these features. The decoder integrates the chained residual pooling network (CRP_Net) and the dual attention fusion and extraction (DAFE) module. The CRP_Net module mainly uses chained residual pooling and multi-feature fusion to extract advanced semantic features. In the DAFE module, position attention module (PAM) and channel attention mechanism (CAM) are combined with weighted filtering. The entire decoding network is constructed in a densely connected manner to enhance the gradient transmission among features and take full advantage of them. Finally, the airport results extracted by the decoding network were up-sampled by bilinear interpolation to accomplish airport extraction from high-resolution SAR images. To verify the proposed framework, experiments were performed using Gaofen-3 SAR images with 1 m resolution, and three different airports were selected for accuracy evaluation. The results showed that the mean pixels accuracy (MPA) and mean intersection over union (MIoU) of the MDDA network was 0.98 and 0.97, respectively, which is much higher than RefineNet and DeepLabV3. Therefore, MDDA can achieve automatic airport extraction from high-resolution SAR images with satisfying accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Feng Wang ◽  
Zhiming Xu ◽  
Zemin Qiu ◽  
Weichuan Ni ◽  
Jiaqi Li ◽  
...  

The target detection algorithms have the problems of low detection accuracy and susceptibility to occlusion in existing smart cities. In response to this phenomenon, this paper presents an algorithm for target detection in a smart city combined with depth learning and feature extraction. It proposes an adaptive strategy is introduced to optimize the algorithm search windows based on the traditional SSD algorithm, which according to the target operating conditions change, strengthening the algorithm to enhance the accuracy of the objective function which is combined with the weighted correlation feature fusion method, and this method is a combination of appearance depth features and depth features. Experimental results show that this algorithm has a better antiblocking ability and detection accuracy compared with the conventional SSD algorithms. In addition, it has better stability in a changing environment.


2021 ◽  
Vol 13 (14) ◽  
pp. 2686
Author(s):  
Di Wei ◽  
Yuang Du ◽  
Lan Du ◽  
Lu Li

The existing Synthetic Aperture Radar (SAR) image target detection methods based on convolutional neural networks (CNNs) have achieved remarkable performance, but these methods require a large number of target-level labeled training samples to train the network. Moreover, some clutter is very similar to targets in SAR images with complex scenes, making the target detection task very difficult. Therefore, a SAR target detection network based on a semi-supervised learning and attention mechanism is proposed in this paper. Since the image-level label simply marks whether the image contains the target of interest or not, which is easier to be labeled than the target-level label, the proposed method uses a small number of target-level labeled training samples and a large number of image-level labeled training samples to train the network with a semi-supervised learning algorithm. The proposed network consists of a detection branch and a scene recognition branch with a feature extraction module and an attention module shared between these two branches. The feature extraction module can extract the deep features of the input SAR images, and the attention module can guide the network to focus on the target of interest while suppressing the clutter. During the semi-supervised learning process, the target-level labeled training samples will pass through the detection branch, while the image-level labeled training samples will pass through the scene recognition branch. During the test process, considering the help of global scene information in SAR images for detection, a novel coarse-to-fine detection procedure is proposed. After the coarse scene recognition determining whether the input SAR image contains the target of interest or not, the fine target detection is performed on the image that may contain the target. The experimental results based on the measured SAR dataset demonstrate that the proposed method can achieve better performance than the existing methods.


2021 ◽  
Vol 13 (4) ◽  
pp. 812
Author(s):  
Jiahuan Zhang ◽  
Hongjun Song

Target detection on the sea-surface has always been a high-profile problem, and the detection of weak targets is one of the most difficult problems and the key issue under this problem. Traditional techniques, such as imaging, cannot effectively detect these types of targets, so researchers choose to start by mining the characteristics of the received echoes and other aspects for target detection. This paper proposes a false alarm rate (FAR) controllable deep forest model based on six-dimensional feature space for efficient and accurate detection of weak targets on the sea-surface. This is the first attempt at the deep forest model in this field. The validity of the model was verified on IPIX data, and the detection probability was compared with other proposed methods. Under the same FAR condition, the average detection accuracy rate of the proposed method could reach over 99.19%, which is 9.96% better than the results of the current most advanced method (K-NN FAR-controlled Detector). Experimental results show that multi-feature fusion and the use of a suitable detection framework have a positive effect on the detection of weak targets on the sea-surface.


2021 ◽  
pp. 1-18
Author(s):  
R.S. Rampriya ◽  
Sabarinathan ◽  
R. Suganya

In the near future, combo of UAV (Unmanned Aerial Vehicle) and computer vision will play a vital role in monitoring the condition of the railroad periodically to ensure passenger safety. The most significant module involved in railroad visual processing is obstacle detection, in which caution is obstacle fallen near track gage inside or outside. This leads to the importance of detecting and segment the railroad as three key regions, such as gage inside, rails, and background. Traditional railroad segmentation methods depend on either manual feature selection or expensive dedicated devices such as Lidar, which is typically less reliable in railroad semantic segmentation. Also, cameras mounted on moving vehicles like a drone can produce high-resolution images, so segmenting precise pixel information from those aerial images has been challenging due to the railroad surroundings chaos. RSNet is a multi-level feature fusion algorithm for segmenting railroad aerial images captured by UAV and proposes an attention-based efficient convolutional encoder for feature extraction, which is robust and computationally efficient and modified residual decoder for segmentation which considers only essential features and produces less overhead with higher performance even in real-time railroad drone imagery. The network is trained and tested on a railroad scenic view segmentation dataset (RSSD), which we have built from real-time UAV images and achieves 0.973 dice coefficient and 0.94 jaccard on test data that exhibits better results compared to the existing approaches like a residual unit and residual squeeze net.


Sign in / Sign up

Export Citation Format

Share Document