scholarly journals Flow of the Bingham-Papanastasiou Regularized Material in a Channel in the Presence of Obstacles: Correlation between Hydrodynamic Forces and Spacing of Obstacles

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Asif Mehmood ◽  
Rashid Mahmood ◽  
Afraz Hussain Majeed ◽  
Farah Jabeen Awan

The numerical modeling and simulation for the stationary Bingham fluid flow around two confined circular cylinders with various gap ratios are studied. The singularity in the model’s apparent viscosity is dealt by Papanastasiou’s regularization. The model equations are discretized by adopting the methodology based on finite element method (FEM) by choosing a mixed higher order LBB-stable P 2 − P 1 finite element pair. The direct solver PARADISO has been utilized to solve the linearized system of equations. Hydrodynamic forces represented by drag and lift coefficients are computed, and a correlation coefficient is calculated for the gap ratios 0.1 ≤ G p ≤ 0.3 and for several values of the Bingham number 0 ≤ B n ≤ 50 . Line graphs for horizontal and vertical velocities are drawn. Moreover, velocity and pressure profiles are plotted for pertinent values of the parameters. Plug and shear zones are revealed via velocity snapshots in the domain. Pressure is nonlinear in the vicinity of the obstacles and becomes linear downstream in the cylinders as expected in channel flows.

2020 ◽  
Vol 18 ◽  
pp. 100600 ◽  
Author(s):  
Khalil Ur Rehman ◽  
Qasem M. Al-Mdallal ◽  
Aqeela Qaiser ◽  
M.Y. Malik ◽  
M.N. Ahmed

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 276 ◽  
Author(s):  
Muhammad Asad ◽  
Hassan Ijaz ◽  
Waqas Saleem ◽  
Abdullah Mahfouz ◽  
Zeshan Ahmad ◽  
...  

This contribution presents three-dimensional turning operation simulations exploiting the capabilities of finite element (FE) based software Abaqus/Explicit. Coupled temperature-displacement simulations for orthogonal cutting on an aerospace grade aluminum alloy AA2024-T351 with the conceived numerical model have been performed. Numerically computed results of cutting forces have been substantiated with the experimental data. Research work aims to contribute in comprehension of the end-burr formation process in orthogonal cutting. Multi-physical phenomena like crack propagation, evolution of shear zones (positive and negative), pivot-point appearance, thermal softening, etc., effecting burr formation for varying cutting parameters have been highlighted. Additionally, quantitative predictions of end burr lengths with foot type chip formation on the exit edge of the machined workpiece for various cutting parameters including cutting speed, feed rate, and tool rake angles have been made. Onwards, to investigate the influence of each cutting parameter on burr lengths and to find optimum values of cutting parameters statistical analyses using Taguchi’s design of experiment (DOE) technique and response surface methodology (RSM) have been performed. Investigations show that feed has a major impact, while cutting speed has the least impact in burr formation. Furthermore, it has been found that the early appearance of the pivot-point on the exit edge of the workpiece surface results in larger end-burr lengths. Results of statistical analyses have been successfully correlated with experimental findings in published literature.


Author(s):  
Xiaofei Cheng ◽  
Yongxue Wang ◽  
Bing Ren ◽  
Guoyu Wang

In the paper, a 2D numerical model is established to simulate the hydrodynamic forces on a submarine piggyback pipeline under regular wave action. The two-dimensional Reynolds-averaged Navier-Stokes equations with a κ-ω turbulence model closure are solved by using a three-step Taylor-Galerkin finite element method (FEM). A Computational Lagrangian-Eulerian Advection Remap Volume of Fluid (CLEAR-VOF) method is employed to simulate free surface problems, which is inherently compatible with unstructured meshes and finite element method. The numerical results of in-line force and lift (transverse) force on the piggyback pipeline for e/D = G/D = 0.25 and KC = 25.1 are compared with physical model test results, which are conducted in a marine environmental flume in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. It is indicated that the numerical results coincide with the experimental results and that the numerical model can be used to predict the hydrodynamic forces on the piggyback pipeline under wave action. Based on the numerical model, the surface pressure distribution and the motion of vortices around the piggyback pipeline for e/D = G/D = 0.25, KC = 25.1 are investigated, and a characteristic vortex pattern around the piggyback pipeline denoted “anti-phase-synchronized” pattern is recognized.


1986 ◽  
Vol 108 (2) ◽  
pp. 271-276 ◽  
Author(s):  
M. P. Mengu¨c¸ ◽  
R. Viskanta

A solution of the radiative transfer equation for an axisymmetric cylindrical enclosure containing radiatively participating gases and particles is presented. Nonhomogeneities of the radiative properties of the medium as well as of the radiation characteristics of the boundaries are allowed for, and the boundaries are assumed to be diffusely emitting and reflecting. The scattering phase function is represented by the delta-Eddington approximation to account for highly forward scattering by particulates. The model for radiative transfer is based on the P1 and P3-spherical harmonics approximations. Numerical solutions of model equations are obtained using finite-difference as well as finite-element schemes.


Sign in / Sign up

Export Citation Format

Share Document