scholarly journals A Method for Quantitative Evaluation of Seismic Stability of Loess Slope Based on the Shaking Table Model Test

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Pu Xiaowu ◽  
Wang Lanmin ◽  
Wang Ping ◽  
Chai Shaofeng ◽  
Xu Shiyang

The large-scale shaking table model test, which can directly reproduce the process of slope instability and failure, is an important technical means for the prediction and evaluation of slope seismic stability. However, up to now, the systematic slope stability evaluation method based on the shaking table slope model test has not been established, which limits the application of the expensive shaking table model test in slope seismic design. Therefore, the slope stability evaluation method based on the model test needs to be developed and innovated. In this research, through three loess slope model tests with different rainfall, according to the change law of the peak value of transfer function spectrum, combined with the macrodestructive characteristics of the slope model, an accurate calculation method of the critical instability acceleration of the slope is proposed. Based on the behavior similarity theory, for the shaking table model test of slope whose soil cohesion cannot meet the similarity ratio, the reduction method of applying the critical instability acceleration obtained from the model test to prototype slope is proposed. Based on first-order natural frequency and damping ratio extracted from the TF spectrum curve, a calculation method for the stability factor Fs of loess slope based on the shaking table model test is proposed, and the stability factors of loess slope under the action of different seismic ground motion would be quantitatively calculated. The above methods provide another effective way for qualitative prediction and evaluation of seismic stability of loess slope.

2010 ◽  
Vol 66 (1) ◽  
pp. 196-201 ◽  
Author(s):  
Kiyonobu KASAMA ◽  
Kouki ZEN ◽  
Guangqi CHEN ◽  
Kentaro HAYASHI

Author(s):  
Xinhai Zhou ◽  
Xuansheng Cheng ◽  
Lei Qi ◽  
Ping Wang ◽  
Shaofeng Chai ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Shujin Li ◽  
Cai Wu ◽  
Fan Kong

A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technical Specification for Concrete Structures of Tall Building (JGJ3-2010). To investigate its seismic performance, a shaking table test with a 1/30 scale model is carried out in Structural Laboratory in Wuhan University of Technology. The dynamic characteristics and the responses of the model subject to different seismic intensities are investigated via the analyzing of shaking table test data and the observed cracking pattern of the scaled model. Finite element analysis of the shaking table model is also established, and the results are coincident well with the test. An autoregressive method is also presented to identify the damage of the structure after suffering from different waves, and the results coincide well with the test and numerical simulation. The shaking table model test, numerical analysis, and damage identification prove that this building is well designed and can be safely put into use. Suggestions and measures to improve the seismic performance of structures are also presented.


2010 ◽  
Vol 163-167 ◽  
pp. 4156-4164 ◽  
Author(s):  
Qiu Hua Duan ◽  
Meng Lin Lou

Based on the shaking table model test of a bent-type aqueduct on the rigidity foundation, the dynamic characteristics and seismic performance of the aqueduct structure subjected to vertical seismic waves are discussed. The test indicates that (1) Water in the aqueduct makes the mass of the structure larger and the frequency of the model structure lower. The water in aqueduct makes fundamental frequency of the model reduce 32% and the modal damping increase 38.5% averagely. (2)The hydrodynamic pressure response at the bottom of the aqueduct is the highest. (3)The dynamic effect of El waves on the aqueduct structure is greater than that of all SEW waves. (4) Different types of earthquake waves have different frequency spectrum characteristics, so that the aqueduct model responses differently to different waves. (5) The water in the aqueduct sometimes plays a role as TLD damping in certain scope. If surpassing this scope, the water sloshing makes the vertical acceleration response of the aqueduct increase. The results of the test not only lead to some significant conclusions for the earthquake-resistant design of large bent-type aqueducts, but also provide a ground for further studies on the effects of soil-pile-aqueduct interaction.


Sign in / Sign up

Export Citation Format

Share Document