scholarly journals Multidirection Object Detection in Aerial View of Traffic Target under Complex Scenes

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zeqing Zhang ◽  
Weiwei Lin ◽  
Yuqiang Zheng

Focusing on DOTA, the multidirectional object dataset in aerial view of vehicles, CMDTD has been proposed. The reason why it is difficult for applying the general object detection algorithm in multidirectional object detection has been analyzed in this paper. Based on this, the detection principle of CMDTD including its backbone network and multidirectional multi-information detection end module has been studied. In addition, in view of the complexity of the scene faced by aerial view of vehicles, a unique data expansion method is proposed. At last, three datasets have been experimented using the CMDTD algorithm, proving that the cascaded multidirectional object detection algorithm with high effectiveness is superior to other methods.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1111
Author(s):  
Feng Lin ◽  
Tian Hou ◽  
Qiannan Jin ◽  
Aiju You

Various floating debris in the waterway can be used as one kind of visual index to measure the water quality. The traditional image processing method is difficult to meet the requirements of real-time monitoring of floating debris in the waterway due to the complexity of the environment, such as reflection of sunlight, obstacles of water plants, a large difference between the near and far target scale, and so on. To address these issues, an improved YOLOv5s (FMA-YOLOv5s) algorithm by adding a feature map attention (FMA) layer at the end of the backbone is proposed. The mosaic data augmentation is applied to enhance the detection effect of small targets in training. A data expansion method is introduced to expand the training dataset from 1920 to 4800, which fuses the labeled target objects extracted from the original training dataset and the background images of the clean river surface in the actual scene. The comparisons of accuracy and rapidity of six models of this algorithm are completed. The experiment proves that it meets the standards of real-time object detection.



Author(s):  
Samuel Humphries ◽  
Trevor Parker ◽  
Bryan Jonas ◽  
Bryan Adams ◽  
Nicholas J Clark

Quick identification of building and roads is critical for execution of tactical US military operations in an urban environment. To this end, a gridded, referenced, satellite images of an objective, often referred to as a gridded reference graphic or GRG, has become a standard product developed during intelligence preparation of the environment. At present, operational units identify key infrastructure by hand through the work of individual intelligence officers. Recent advances in Convolutional Neural Networks, however, allows for this process to be streamlined through the use of object detection algorithms. In this paper, we describe an object detection algorithm designed to quickly identify and label both buildings and road intersections present in an image. Our work leverages both the U-Net architecture as well the SpaceNet data corpus to produce an algorithm that accurately identifies a large breadth of buildings and different types of roads. In addition to predicting buildings and roads, our model numerically labels each building by means of a contour finding algorithm. Most importantly, the dual U-Net model is capable of predicting buildings and roads on a diverse set of test images and using these predictions to produce clean GRGs.



IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chen Baoyuan ◽  
Liu Yitong ◽  
Sun Kun


Author(s):  
Louis Lecrosnier ◽  
Redouane Khemmar ◽  
Nicolas Ragot ◽  
Benoit Decoux ◽  
Romain Rossi ◽  
...  

This paper deals with the development of an Advanced Driver Assistance System (ADAS) for a smart electric wheelchair in order to improve the autonomy of disabled people. Our use case, built from a formal clinical study, is based on the detection, depth estimation, localization and tracking of objects in wheelchair’s indoor environment, namely: door and door handles. The aim of this work is to provide a perception layer to the wheelchair, enabling this way the detection of these keypoints in its immediate surrounding, and constructing of a short lifespan semantic map. Firstly, we present an adaptation of the YOLOv3 object detection algorithm to our use case. Then, we present our depth estimation approach using an Intel RealSense camera. Finally, as a third and last step of our approach, we present our 3D object tracking approach based on the SORT algorithm. In order to validate all the developments, we have carried out different experiments in a controlled indoor environment. Detection, distance estimation and object tracking are experimented using our own dataset, which includes doors and door handles.





2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.



2021 ◽  
Vol 11 (13) ◽  
pp. 6016
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

For autonomous vehicles, it is critical to be aware of the driving environment to avoid collisions and drive safely. The recent evolution of convolutional neural networks has contributed significantly to accelerating the development of object detection techniques that enable autonomous vehicles to handle rapid changes in various driving environments. However, collisions in an autonomous driving environment can still occur due to undetected obstacles and various perception problems, particularly occlusion. Thus, we propose a robust object detection algorithm for environments in which objects are truncated or occluded by employing RGB image and light detection and ranging (LiDAR) bird’s eye view (BEV) representations. This structure combines independent detection results obtained in parallel through “you only look once” networks using an RGB image and a height map converted from the BEV representations of LiDAR’s point cloud data (PCD). The region proposal of an object is determined via non-maximum suppression, which suppresses the bounding boxes of adjacent regions. A performance evaluation of the proposed scheme was performed using the KITTI vision benchmark suite dataset. The results demonstrate the detection accuracy in the case of integration of PCD BEV representations is superior to when only an RGB camera is used. In addition, robustness is improved by significantly enhancing detection accuracy even when the target objects are partially occluded when viewed from the front, which demonstrates that the proposed algorithm outperforms the conventional RGB-based model.



Sign in / Sign up

Export Citation Format

Share Document