scholarly journals Investigation of Multiple Hole Grouting for Reducing Water Inrush Risk in Underground Engineering

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Changde Yang ◽  
Ling Li ◽  
Ying Li ◽  
Yakuan Gao

Reinforcement with grout as an environmentally friendly technology has played a key role in underground coal mining. The risk of the water inrush into coal mines can all be reduced by grouting. A model that integrates a geographic information system (GIS), distribution of quantity of grouting injected, and water inflow correlation method is proposed here to evaluate the effects of grouted reinforcement in coal mining. The temporal and spatial characteristics of the volume of grout injected and water yield of aquifers are analyzed by using the GIS, and the rate of filling of cement slurry and its distribution characteristics are determined. The effects of grouting on the aquifers which has been carried out to reduce their permeability are determined by comparing the spatial temporal variations in the volume of the grout injected, water yield, and rate of filling of the cement slurry. The method was applied in a case study in a coalmine in Henan province, China, in which the risk of the water inrush from karst aquifers has been reduced by grouting. There are three limestone aquifers, namely, L8, L10, and L11 which underlie an exploitable coal seam. The result indicates that most of the cement slurry is consumed when the water yield is 20 to 30 m3/h; and that there are minimal changes of the electrical properties of the rock stratum under coal seam when the water yield of L11 is low within the range of 40 m. The resistivity of the aquifers before and after grouting and their spatial characteristics are tested by using the transient electromagnetic method (TEM), and this shows that there are no areas with low resistivity. The electrical properties of the strata at a depth that ranges from 40–80 m with transverse homogeneity show that Aquifers L10 and L11 have been transformed into aquicludes. The reinforcement effect of aquifers with grout is good.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


Author(s):  
Qiqing Wang ◽  
Wenping Li

Water inrush from coal floor constitutes one of the main disasters in mine construction and mine production, which always brings high risks and losses to the coal mine safe production. As the mining depth of coal fields in North China gradually increased, especially in the complicated structural region, the threat posed by limestone karstic water of coal floor to the safe stoping of mines has become increasingly prominent. In this paper, the Taoyuan coalmine was taken as an example, for which, the directional borehole grouting technology was utilized to reinforce the coal seam floor prior to mining. Also, the factors affecting the grouting effect were analyzed. These were the geological structure, the crustal stress and the range of slurry diffusion. The layout principle of grouting drilling was put forward and the directional drilling structure was designed. The water level observations in the end hole indicated that the target stratum was accurate and reliable. The effect of grouting was validated through the audio frequency electric perspective method and the holedrilling in the track trough. The results demonstrated that the effect of grouting in third limestone and the rock stratum above the third limestone of coal seam floor was apparent. Simultaneously, no water inrush occurred following the actual mining of the working face, which further demonstrated that the grouting reinforcement effect was apparent. The research findings were of high significance for the prevention and control of floor water disaster and water conservation in deep complex structural areas.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yaru Guo ◽  
Shuning Dong ◽  
Yonghong Hao ◽  
Zaibin Liu ◽  
Tian-Chyi Jim Yeh ◽  
...  

With the increase in depth of coal mining, the hydrogeological complexity largely increases and water inrush accidents happen more frequently. For the safety of coal mining, horizontal directional drilling and grouting techniques have been implemented to detect and plug the fractures and conduits that deliver high-pressure groundwater to coal mine. Taking the grouting engineering performed at Xingdong coal mine at 980 m below sea level as an example, we collected the data of grouting quantity, the loss of drilling fluid, gamma value, water temperature, average water absorption, distance between grouting loss points, water pressure on coal seam floor, and aquifuge thickness at 90 boreholes in the mine to conduct grey relational analysis, first. The analysis showed that the grouting quantity was highly correlated with all other factors. Subsequently, grey system evaluation was used to evaluate the risk of water inrush from the coal seam floor. The results of risk analysis illustrated that three water inrushes from Ordovician limestone occurred in mining face 2127, 2125, and 2222 in the study area were all located in the area with a risk score higher than 65. Through grouting, the identified cracks were effectively blocked and waterproof layers beneath the coal seam floors were constructed to reduce the threat of water inrush. By comparing the risk assessment results with three water inrush cases before grouting operation, we found that water inrush areas were consistent with the area of higher risk.


2013 ◽  
Vol 295-298 ◽  
pp. 3019-3022 ◽  
Author(s):  
Lin Xiao ◽  
Shu Heng Tang ◽  
Cun Liang Zhao ◽  
Tong Xing Yuan ◽  
Wen Yang

This paper discussed the probability and variability risk of water inrush from No.9 coal seam floor during mining under high pressure. The grey-risk model is used to calculate and evaluate the risk base on the statistical data about water levels of existing bursting points, maximum water yield and specific capacity discharge. It is concluded that the risk is very great to mine the lower group coal seam under the high pressure in Guoerzhuang mine.The author proposes that the measures, including mining by areas and mining-detecting, should be taken in advance to reduce emergency.


2021 ◽  
Author(s):  
Haitao Xu ◽  
hui yang ◽  
Wenbin Sun ◽  
Lingjun Kong ◽  
Peng Zhang

Abstract In order to find out the characteristics of geological isomer exposed in the mining process of 12318 working face in Pansan Mine and grasp its influence law on subsequent coal seams mining, the isomer was firstly determined as the collapse column by means of 3D seismic, transient electromagnetic detection, SYT detection and other methods, and its development characteristics, conductivity and water enrichment were identified.Then FLAC3D numerical simulation software was used to analyze the characteristics of vertical stress and plastic failure zone in different coal seams during mining.Finally, by comparing the ultimate failure depth of floor and the thickness of waterproof layer in the process of each coal seam directly pushing through the collapse column, the risk of water inrush and the prevention are analyzed.The results show that the exposed geological isomer is characterized by weak water-rich collapse column.Under the influence of the mining of the previous coal seam and the activation of the collapse column, the subsequent coal seam is in the low stress area before mining, which increases the floor failure and causes the activation of the collapse column more easily during mining.Coal 5# and 4# can be directly pushed through the collapse column, and coal pillar of sufficient width should be left for coal 1# to prevent the collapse column from activating water inrush.


2019 ◽  
Vol 24 (3) ◽  
pp. 387-397 ◽  
Author(s):  
Dongsheng Li ◽  
Zhongbin Tian ◽  
Yulong Ma ◽  
Jiayue Gu ◽  
Yanju Ji ◽  
...  

Since goaf water can cause water inrush, collapse or other severe geological hazards in coal mining, its detection has become a significant issue. As the grounded electrical source airborne transient electromagnetic (GREATEM) system can provide considerable prospecting depth, lateral resolution, and high detection efficiency, the method may be suitable for goaf water detection. To verify the feasibility, a field electromagnetic survey over Qinshui coal mine (Shanxi province, China) was conducted, and the system was used to detect the geoelectric characteristics of goaf water. After data acquisition, data processing, and apparent resistivity calculation, the resistivity profile of survey area is clearly presented, which is consistent with the information provided by Shanxi Coal Geology Geophysical Surveying Exploration Institute, China. The result shows that the application of GREATEM system is an effective technique for resistivity detection of goaf water, and can reduce the risks in coal mining.


2011 ◽  
Vol 467-469 ◽  
pp. 1870-1875 ◽  
Author(s):  
Guang Ming Zhao ◽  
Xiang Rui Meng

By the impact of coal mining, coal floor will produce distortion and damage, and make the damage zone which may result in water inrush from the floor of coal seam. CT technology with DC electricity is used to analyze two-dimensional point source current field by employing the forward calculation, inverse iteration, model correction and other methods. On the basis, inverted resistivity image of the detecting zone is obtained, which can help to determine damage law and damage depth of coal seam floor. And then the possibility of water inrush from the coal floor is analyzed. Industry practice shows that the research results are credible and can play an important guiding role in the controlling of water inrush.


2014 ◽  
Vol 1049-1050 ◽  
pp. 335-338 ◽  
Author(s):  
Fa Quan Liu ◽  
Xue Wen Geng ◽  
Yong Che ◽  
Xiang Cui

To get the maximum coal in front of the working face of the 17# coal seam, we installed a longer beam which is 1.2m in length in the leading end of the original working face supports ZF3000/17/28, and know that working face supports’ setting load and working resistance are lower .We changed the original supports with shield supports ZY3800/15/33 that are adaptable in the geological condition and got the favorable affection.


Sign in / Sign up

Export Citation Format

Share Document