scholarly journals Application of Directional Borehole Grouting Technology to Structural Complex Foor Reinforcement in Deep Underground Coal Mine

Author(s):  
Qiqing Wang ◽  
Wenping Li

Water inrush from coal floor constitutes one of the main disasters in mine construction and mine production, which always brings high risks and losses to the coal mine safe production. As the mining depth of coal fields in North China gradually increased, especially in the complicated structural region, the threat posed by limestone karstic water of coal floor to the safe stoping of mines has become increasingly prominent. In this paper, the Taoyuan coalmine was taken as an example, for which, the directional borehole grouting technology was utilized to reinforce the coal seam floor prior to mining. Also, the factors affecting the grouting effect were analyzed. These were the geological structure, the crustal stress and the range of slurry diffusion. The layout principle of grouting drilling was put forward and the directional drilling structure was designed. The water level observations in the end hole indicated that the target stratum was accurate and reliable. The effect of grouting was validated through the audio frequency electric perspective method and the holedrilling in the track trough. The results demonstrated that the effect of grouting in third limestone and the rock stratum above the third limestone of coal seam floor was apparent. Simultaneously, no water inrush occurred following the actual mining of the working face, which further demonstrated that the grouting reinforcement effect was apparent. The research findings were of high significance for the prevention and control of floor water disaster and water conservation in deep complex structural areas.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yaru Guo ◽  
Shuning Dong ◽  
Yonghong Hao ◽  
Zaibin Liu ◽  
Tian-Chyi Jim Yeh ◽  
...  

With the increase in depth of coal mining, the hydrogeological complexity largely increases and water inrush accidents happen more frequently. For the safety of coal mining, horizontal directional drilling and grouting techniques have been implemented to detect and plug the fractures and conduits that deliver high-pressure groundwater to coal mine. Taking the grouting engineering performed at Xingdong coal mine at 980 m below sea level as an example, we collected the data of grouting quantity, the loss of drilling fluid, gamma value, water temperature, average water absorption, distance between grouting loss points, water pressure on coal seam floor, and aquifuge thickness at 90 boreholes in the mine to conduct grey relational analysis, first. The analysis showed that the grouting quantity was highly correlated with all other factors. Subsequently, grey system evaluation was used to evaluate the risk of water inrush from the coal seam floor. The results of risk analysis illustrated that three water inrushes from Ordovician limestone occurred in mining face 2127, 2125, and 2222 in the study area were all located in the area with a risk score higher than 65. Through grouting, the identified cracks were effectively blocked and waterproof layers beneath the coal seam floors were constructed to reduce the threat of water inrush. By comparing the risk assessment results with three water inrush cases before grouting operation, we found that water inrush areas were consistent with the area of higher risk.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Yunpei Liang ◽  
Lei Li ◽  
Xuelong Li ◽  
Kequan Wang ◽  
Jinhua Chen ◽  
...  

With mining technology and mechanization degree being improving, fully mechanized caving mining technology (FCM) has become a main method for thick coal seam extraction in China. However, roof-coal caving characteristics in turn restrict its recovery efficiency, especially for the coal seam with complicated structure (CCS), that is, the coal seam comprises hard or soft coal and gangue. In order to explore the key factors influencing the roof-coal caving and recovery characteristics, related research work has been conducted as follows: firstly, a mechanical model of CCS has been established, which indicates the strength of the coal and gangue will directly affect the roof-coal recovery. Meanwhile, based on the geological settings of Qinyuan coal mine, numerical simulation on roof-coal caving law under different thicknesses of hard or soft coal and gangue has been performed using UDEC software. The results show that the maximum principal stress will increase with the increase of mining depth, making the roof-coal to break easily. Furthermore, the range of the plastic zone of the top coal and the damage degree of the top coal increase with the increase of mining depth. Physical modeling results show that when an extraction-caving ratio is 1, the number of times the coal arch forms is 0.43 at every caving, up to a maximum of 3; the number of times coal arch forms with an extraction-caving ratio of 2 is 4.65 times larger than that with an extraction-caving ratio of 1. The probability of coal arch formation with an extraction-caving ratio of 3 is minimal, about 0.4, which is due to that the arch span is large and the curvature is small, so it is difficult to form a stable arch structure. According to the mechanical characteristics of roof-coal in Qinyuan coal mine, deep-hole blasting technique has been used to reduce the fragments of roof-coal crushed. The results show that this technique can effectively improve the recovery of roof-coal.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Delong Zou ◽  
Xiang Zhang

When stratified mining is adopted in high-gas and extrathick coal seam, a large amount of pressure-relief gas of the lower layer flows into the upper layer goaf along the cracks in the layer, resulting in upper layer working face to frequently exceed the gas limit. And ordinary drilling can no longer meet the requirements of the pressure-relief gas drainage of the lower layer. The 205 working face of Tingnan Coal Mine is taken as the test background in this paper, and based on the “pressure-relief and flow-increase” effect of the lower layer under the action of mining stress during the upper layer mining, the gas drainage of kilometer directional drilling in lower layer is studied. According to the distribution characteristics of support pressure before and after the working face, the pressure-relief principle, fracture development characteristics, and gas migration law of the lower layered coal body are analyzed in the process of advancing the upper layered working face in the extrathick coal seam with high gas. The maximum depth of goaf damage is calculated theoretically, and the Flac3D numerical simulation of the failure deformation of the 205 working face floor is carried out. It is found that the maximum depth of plastic failure of the lower layer is about 13 m. According to the plastic deformation of the lower layer under different vertical depths and the movement of coal and rock mass, it is determined that the reasonable range of kilometer directional drilling in the lower layer is 6–9 m below the floor vertical depth. From 15 m to 45 m in the two parallel grooves, there is no fracture failure with a sharp increase or decrease in the displacement in the local range. Meanwhile, in this part, the roof falling behind is not easy to compaction, and the displacement of the floor is large, which does not cause plastic damage. The degree of pressure relief is more sufficient, and the permeability of the lower layer is good. Therefore, drilling should be arranged as much as possible along the working face in this tendency range. The determination of reasonable arrangement range of kilometer directional drilling in extrathick coal seam provides reference index and theoretical guidance for industrial test of working face and also provides new ideas for gas control of stratified mining face in high-gas and extrathick coal seam.


2013 ◽  
Vol 807-809 ◽  
pp. 2378-2388 ◽  
Author(s):  
Hua Wang ◽  
Zhi Qiang Liu ◽  
Hong Guang Ji ◽  
Jin An Wang ◽  
Guo Dong Zhao ◽  
...  

Shuangliu mine is located in the middle of Hedong coalfield, Lvliang City , Shanxi Province. It is one of the typical NorthChinaType coalfields. The upper strata of the lower-group coal seams (8#, 9# seam) have several thin-layer limestones of the Taiyuan Formation, and the underlying strata of the lower-group coal seams have thick Ordovician limestone. Water inrush accident has ever happened in other mine in its vicinity. Therefore, whether the lower-group coal seams could be mined safely is related to the medium-and long-term program and sustainable development of Shuangliu Mine. Based on experimental study of physical and mechanical properties of main rocks of the roof and floor of the under-group coal seams, and the application of "Up Three Zone" Theory of coal seam roof (the caving zone, water flowing fractured zone and bending sinking zone), "Down Three Zone" Theory of coal seam floor (mining damage zone, water-resisting zone, water-conductive zone) and Water inrush coefficient Theory, we analyzed the water inrush risk and divided potential dangerous subareas of water inrush from coal seam floor while mining lower-group coal seams. The research findings can provide scientific basis for mining design and safe mining of lower-group coal seams in Shuangliu Coal Mine.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Shichuan Zhang ◽  
Baotang Shen ◽  
Yangyang Li ◽  
Shengfan Zhou

Water inrush in underground mines is a major safety threat for mining personnel, and it can also cause major damage to mining equipment and result in severe production losses. Water inrush can be attributed to the coalescence of rock fractures and the formation of water channel in rock mass due to the interaction of fractures, hydraulic flow, and stress field. Hence, predicting the fracturing process is the key for investigating the water inrush mechanisms for safe mining. A new coupling method is designed in FRACOD to investigate the mechanisms of water inrush disaster (known as “Luotuoshan accident”) which occurred in China in 2010 in which 32 people died. In order to investigate the evolution processes and mechanisms of water inrush accident in Luotuoshan coal mine, this study applies the recently developed fracture-hydraulic (F-H) flow coupling function to FRACOD and focuses on the rock fracturing processes in a karst collapse column which is a geologically altered zone linking several rock strata vertically formed by the long-term dissolution of the flowing groundwater. The numerical simulation of water inrush is conducted based on the actual geological conditions of Luotuoshan mining area, and various materials with actual geological characteristics were used to simulate the rocks surrounding the coal seam. The influences of several key factors, such as in situ stresses, fractures on the formation, and development of water inrush channels, are investigated. The results indicate that the water inrush source is the Ordovician limestone aquifer, which is connected by the karst collapse column to No. 16 coal seam; the fracturing zone that led to a water inrush occurs in front of the roadway excavation face where new fractures coalesced with the main fractured zone in the karst collapse column.


2018 ◽  
Vol 36 (5) ◽  
pp. 1310-1334 ◽  
Author(s):  
Qingsong Li ◽  
Xin He ◽  
Jiahao Wu ◽  
Shu Ma

In order to enhance the management level of coal mine safety production and promote the “safe, accurate and efficient” preventive treatments for gas in Guizhou of China, the occurrence and other prominent features of coal and gas are investigated. The characteristics and regularities of coal mine accidents in Guizhou during 2001–2015 are summarized to analyze the commonness of gas accidents in general and determine the characteristics of gas preventive treatment. Geological data, gas basic parameters, and physical properties of coal of 386 mines and 761 sets of coal seams in Guizhou are also statistically analyzed. Based on step control theory of gas occurrence structure and the regionally tectonic regularity of coal-bearing stratum distribution, the deformations of coal measures in Guizhou mine area are mainly caused by great variation of stratigraphic occurrence, complicated geological structure, and high crustal stress. The regional occurrence of coal seam is obvious with the highest content of Tongzi–Zunyi–Liuzhi–Xingyi line, which gradually reduces to the both east and west sides. Influence factors and weights of gas occurrence are expounded from geological and coal factor by mathematical statistics, and the main influence factors of gas occurrence are the sedimentary environment, syncline structure, and metamorphic grade in proper sequence. Combined with the risk prediction of coal and gas outburst area, the prediction of gas pressure by gas content is not suitable under the special occurrence conditions. The initial velocity of gas emission, the solidity coefficient, and the damage type in more than 77% of minable seams all exceed the critical value. This work provides guidance in improvement of the governance situation for gas control in Guizhou. The index prediction system which is suitable for mining conditions of special coal mines in Guizhou should be established.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhenghe Liu ◽  
Peiyun Zhao ◽  
Lusheng Yang ◽  
Jingui Zhao ◽  
Hailong Ye ◽  
...  

Water inrush from coal seam floors is one major geological obstacle hindering safe and efficient production activities in mines. Determining the source of water inrush can facilitate its prediction and guide decisions regarding measures for prevention and control. The process of identifying the location of hidden hydraulic contact points in different confined aquifers forms the basis of hydrogeological explorations. It is also the basis for categorizing mine areas prone to water inrush and making qualitative decisions regarding the prevention and control of water inrush. In this study, the positions of hidden hydraulic contact points between the Ordovician Fengfeng and Shangmajiagou formations in the basement of the Liyazhuang coal mine were determined using numerical simulations of the flow fields. First, each node of the finite element grid was considered as a water inrush point to determine the water level at other nodes. Subsequently, the error between measured and simulated water levels, determined based on the flow fields, was determined using the least squares method. The node with the minimum error was then considered as the hidden hydraulic contact point. The simulation results for the flow field indicate a distance of 5000 m between the hydraulic connection and the water inrush points located between the peak formation and the Majiagou aquifer in the Liyazhuang coal mine. Furthermore, the hydraulic relationship between them is poor. Observational data of water inrush from the floor of the No. 2 coal seam and the water level of the confined aquifer in the Liyazhuang coal mine, including the water quality test data of different Ordovician ash aquifers, show that the source of water inrush from the floor of the No. 2 coal seam is the aquifer of the Fengfeng Formation. This finding is consistent with the results of the numerical simulations of the flow field. The results demonstrate that, in mining areas subjected to high pressures, numerical simulations of the flow field can serve as an effective tool for determining the location of hidden hydraulic contact points.


2021 ◽  
Vol 329 ◽  
pp. 01086
Author(s):  
Yunlong Zou

The geological structure of coal mines has always been a dangerous object of attention in coal mine outburst prevention work. In order to realize coal mine safety information management and early warning of gas disasters, comprehensive use of gas geological theory, coal mine disaster warning theory, computer information technology and other analysis methods, considering the influence of geological structure, coal seam occurrence parameters, and gas parameters, an early warning indicator system for identifying the risk of coal and gas outbursts reflecting the geological characteristics of gas has been constructed. The coal and gas outburst risk identification and early warning system is constructed using the principle of multi-index step-by-step identification and extreme value determination, and it is applied on-site in the 3303 Measure Lane in the East Shaft Area of Sihe Mine. The research results show that the constructed early warning system can provide accurate early warning for the area (belt) affected by the geological structure by 10m, and can provide accurate early warning of coal and gas outbursts based on the outburst signs of gas geology such as the thickness of soft layers and changes in coal seam thickness. This technology provides effective support for coal mines to effectively prevent gas disasters and ensure coal mine production safety.


2021 ◽  
Author(s):  
Dingqi Li ◽  
Shuren Wang ◽  
Yubo Chen ◽  
Mingzhong Wang ◽  
Xu Chang

Abstract Gas extraction is an important topic because of poor permeability and high gas seam in coal mines. A new method for reducing stress and improving permeability of coal seam was proposed to reduce the cost of gas extraction and danger of coal and gas outbursts. In this method, the roadway in coal floor was replaced with directional main borehole, directional branch boreholes were used to replace crossing holes, and soft coal was mined along soft sub layers using a directional drilling machine and a directional hydraulic jet. The numerical simulation showed that the porosity and permeability of coal seam significantly improve after soft sub layers being removed by the directional hydraulic jet. The application of the proposed method and its supporting equipment was carried out under the special gas conditions of Hudi Coal Mine. Results show that the soft coal is mined efficiently along the soft sub layer using the main borehole, branch boreholes, and directional hydraulic jet. Compared the hydraulic punching in the borehole with the ordinary drilling machine, the average speed of mining soft sub layers increased from 0.5 t/h to 3.6 t/h, the equivalent diameter of mining soft sub layers increased from 1.2 m to 7.6m, and the average flow of gas extraction increased from 0.41 m3/d to 6.25 m3/d. The conclusions obtained in this study can provide a reference to the similar coal mining methods.


Sign in / Sign up

Export Citation Format

Share Document