scholarly journals Calculation Model of Relative Permeability in Tight Sandstone Gas Reservoir with Stress Sensitivity

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jin Yan ◽  
Rongchen Zheng ◽  
Peng Chen ◽  
Shuping Wang ◽  
Yunqing Shi

During the development of tight gas reservoir, the irreducible water saturation, rock permeability, and relative permeability change with formation pressure, which has a significant impact on well production. Based on capillary bundle model and fractal theory, the irreducible water saturation model, permeability model, and relative permeability model are constructed considering the influence of water film and stress sensitivity at the same time. The accuracy of this model is verified by results of nuclear magnetic experiment and comparison with previous models. The effects of some factors on irreducible water saturation, permeability, and relative permeability curves are discussed. The results show that the stress sensitivity will obviously reduce the formation permeability and increase the irreducible water saturation, and the existence of water film will reduce the permeability of gas phase. The increase of elastic modulus weakens the stress sensitivity of reservoir. The irreducible water saturation increases, and the relative permeability curve changes little with the increase of effective stress. When the minimum pore radius is constant, the ratio of maximum pore radius to minimum pore radius increases, the permeability increases, the irreducible water saturation decreases obviously, and the two-phase flow interval of relative permeability curve increases. When the displacement pressure increases, the irreducible water saturation decreases, and the interval of two-phase flow increases. These models can calculate the irreducible water saturation, permeability and relative permeability curves under any pressure in the development of tight gas reservoir. The findings of this study can help for better understanding of the productivity evaluation and performance prediction of tight sandstone gas reservoirs.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yongchao Xue ◽  
Qingshuang Jin ◽  
Hua Tian

Finding ways to accelerate the effective development of tight sandstone gas reservoirs holds great strategic importance in regard to the improvement of consumption pattern of world energy. The pores and throats of the tight sandstone gas reservoir are small with abundant interstitial materials. Moreover, the mechanism of gas flow is highly complex. This paper is based on the research of a typical tight sandstone gas reservoir in Changqing Oilfield. A strong stress sensitivity in tight sandstone gas reservoir is indicated by the results, and it would be strengthened with the water production; at the same time, a rise to start-up pressure gradient would be given by the water producing process. With the increase in driving pressure gradient, the relative permeability of water also increases gradually, while that of gas decreases instead. Following these results, a model of gas-water two-phase flow has been built, keeping stress sensitivity, start-up pressure gradient, and the change of relative permeability in consideration. It is illustrated by the results of calculations that there is a reduction in the duration of plateau production period and the gas recovery factor during this period if the stress sensitivity and start-up pressure gradient are considered. In contrast to the start-up pressure gradient, stress sensitivity holds a greater influence on gas well productivity.


1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


2014 ◽  
Vol 1010-1012 ◽  
pp. 1676-1683 ◽  
Author(s):  
Bin Li ◽  
Wan Fen Pu ◽  
Ke Xing Li ◽  
Hu Jia ◽  
Ke Yu Wang ◽  
...  

To improve the understanding of the influence of effective permeability, reservoir temperature and oil-water viscosity on relative permeability and oil recovery factor, core displacement experiments had been performed under several experimental conditions. Core samples used in every test were natural cores that came from Halfaya oilfield while formation fluids were simulated oil and water prepared based on analyze data of actual oil and productive water. Results from the experiments indicated that the shape of relative permeability curves, irreducible water saturation, residual oil saturation, width of two-phase region and position of isotonic point were all affected by these factors. Besides, oil recovery and water cut were also related closely to permeability, temperature and viscosity ratio.


2018 ◽  
Vol 41 (1) ◽  
pp. 1-15
Author(s):  
Prof. Dr. Ir. Bambang Widarsono, M.Sc.

Information about drainage effective two-phase i.e. quasi three-phase relative permeability characteristics of reservoir rocks is regarded as very important in hydrocarbon reservoir modeling. The data governs various processes in reservoir such as gas cap expansion, solution gas expansion, and immiscible gas drive in enhanced oil recovery (EOR). The processes are mechanisms in reservoir that in the end determines reserves and resevoir production performance. Nevertheless, the required information is often unavailable for various reasons. This study attempts to provide solution through customizing an existing drainage relative permeability model enabling it to work for Indonesian reservoir rocks. The standard and simple Corey et al. relative permeability model is used to model 32 water-wet sandstones taken from 5 oil wells. The sandstones represent three groups of conglomeratic sandstones, micaceous-argillaceous sandstones, and hard sandstones. Special correlations of permeability irreducible water saturation and permeability ratio irreducible water saturation have also been established. Model applications on the 32 sandstones have yielded specific pore size distribution index (?) and wetting phase saturation parameter (Sm) values for the three sandstone groups, and established a practical procedure for generating drainage quasi three-phase relative permeability curves in absence of laboratory direct measurement data. Other findings such as relations between ? and permeability and influence of sample size in the modeling are also made.


2012 ◽  
Vol 226-228 ◽  
pp. 2082-2087
Author(s):  
Chi Guan ◽  
Zhang Hua Lou ◽  
Hai Jian Xie

Mercury intrusion porosimetry injection is important in assessing microscopic pore structure of reservoirs. This paper introduces an estimated function for investigating the pore characteristic of western Sichuan tight gas reservoir based on VG model. Better correlations between the measured and estimated results have been obtained using VG model. Representative parameters were obtained by fitting the predictions of VG model to the experimental data, and then the estimated formulation was proposed for the studied reservoir. Correlation analysis of the parameters of VG model confirms that absolute permeability and irreducible water saturation are important in mercury injection porosimetry. The approach applied in this paper is helpful in investigating tight reservoirs, especially in the common cases when measurement is difficult to carry out, partly because of complicated variability in the field, and partly because measuring is time-consuming and expensive.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4578
Author(s):  
Yong Wang ◽  
Yunqian Long ◽  
Yeheng Sun ◽  
Shiming Zhang ◽  
Fuquan Song ◽  
...  

Tight gas reservoirs commonly occur in clastic formations having a complex pore structure and a high water saturation, which results in a threshold pressure gradient (TPG) for gas seepage. The micropore characteristics of a tight sandstone gas reservoir (Tuha oilfield, Xinjiang, China) were studied, based on X-ray diffraction, scanning electron microscopy and high pressure mercury testing. The TPG of gas in cores of the tight gas reservoir was investigated under various water saturation conditions, paying special attention to core permeability and water saturation impact on the TPG. A mathematical TPG model applied a multiple linear regression method to evaluate the influence of core permeability and water saturation. The results show that the tight sandstone gas reservoir has a high content of clay minerals, and especially a large proportion of illite–smectite mixed layers. The pore diameter is distributed below 1 micron, comprising mesopores and micropores. With a decrease of reservoir permeability, the number of micropores increases sharply. Saturated water tight cores show an obvious non-linear seepage characteristic, and the TPG of gas increases with a decrease of core permeability or an increase of water saturation. The TPG model has a high prediction accuracy and shows that permeability has a greater impact on TPG at high water saturation, while water saturation has a greater impact on TPG at low permeability.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 1970-1980 ◽  
Author(s):  
Mahmood Reza Yassin ◽  
Hassan Dehghanpour ◽  
James Wood ◽  
Qing Lan

Summary Recent studies show that the pore network of unconventional rocks, such as gas shales, generally consists of inorganic and organic parts. The organic part is strongly oil-wet and preferentially imbibes the oleic phase. In contrast, the inorganic part is usually hydrophilic and preferentially imbibes the aqueous phase. Conventional theories of relative permeability, which are based on uniform wettability, cannot be applied to determine phase permeability in unconventional rocks with dual-wettability behavior. The objective of this paper is to extend the previous theories to model relative permeability of dual-wettability systems in which oleic and aqueous phases can both act as wetting phases in hydrophobic and hydrophilic pore networks, respectively. In the first part of the paper, we review and discuss the results of scanning electron microscopy (SEM), organic petrography, mercury injection capillary pressure (MICP), and comparative water/oil imbibition experiments conducted on several samples from the Triassic Montney tight gas siltstone play of the Western Canadian Sedimentary Basin. We also discuss various crossplots to understand the reasons behind the observed dual-wettability behavior, and to investigate the spatial distribution and morphology of hydrophilic and hydrophobic pores. In the second part, Purcell's model (Purcell 1949) is extended to develop a conceptual model for relative permeability of gas and water in a dual-wettability system such as the Montney tight gas formation. Finally, the proposed model is compared with measured relative permeability data. The results suggest that the submicron pores within solid bitumen/pyrobitumen are strongly water-repellant; therefore, they prefer gas over water under different saturation conditions. This part of the pore network is usually represented by a long tail at the lower end of the pore-throat-size distribution determined from MICP. The proposed relative permeability model describes single-phase flow of gas through the tail part, and two-phase flow of gas and water through the remaining bell-shaped part of the pore-throat-size distribution, which dominantly represents inorganic micropores. On the basis of our model, by increasing the fraction of water-repellant submicron pores, gas relative permeability decreases for a fixed water saturation. This decrease is ascribed to the reduction of the average size of flow conduits for the gas phase.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050012
Author(s):  
JINGANG FU ◽  
YULIANG SU ◽  
LEI LI ◽  
YONGMAO HAO ◽  
WENDONG WANG

A novel predictive model for calculating relative permeability was derived based on a capillary tube model with fractal theory. Different forms of immovable water including water film (WF) and microcapillary water were incorporated in the new model. Special immovable water called lost dynamic water (LDW) was introduced in the proposed model. The results of verification show that there is agreement between the calculated results and the published experimental data and analytical model. The results indicated that the effect of LDW, WF, and stress dependence had a significant influence on the relative permeability, which cannot be neglected. A larger LDW coefficient, more dead-end pores, and corners in porous media yielded a more complex pore structure. Therefore, more water was trapped in the pore and became connate water, resulting in higher gas relative permeability and lower water relative permeability at a given water saturation. Due to the microcapillary effect, the relative permeability of the water/gas increased/decreased as the drawdown pressure increased at the same water saturation. Higher effective stress was more likely to cause rock deformation, resulting in higher gas relative permeability and lower water relative permeability at a given water saturation. This study provides a significant reference for reservoir engineers conducting water and gas two-phase flow analysis. The theoretical model is beneficial for research into the interpolation of relative permeability via numerical simulation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Cheng Lu ◽  
Xuwen Qin ◽  
Lu Yu ◽  
Lantao Geng ◽  
Wenjing Mao ◽  
...  

Many hydrate-bearing sediments in the Shenhu area of the South China Sea are featured with unconsolidated clayed silt, small particle size, and high content of clay, which can pose a great challenge for gas production. In order to investigate the gas-water relative permeability in clay-silt sediments, through a radial flow experiment, samples from the target sediment in the Shenhu area were selected and studied. The results show that the irreducible water saturation is high and the influence of the gas-water interaction is obvious. The relative permeability analysis shows that the two-phase flow zone is narrow and maximum gas relative permeability is below 0.1. The flow pattern in clay-silt sediment is more complicated, and the existing empirical models are inadequate for flow characterization. The depressurization method to extract a hydrate reservoir with clay-silt sediments faces the problem of insufficient production capacity. Compared with the ordinary hydrate reservoir with sandstone sediment, the hydrate reservoir with clay-silt sediment has a low permeability and poor gas flow capacity. The gas-water ratio abnormally decreases during the production. It is urgent to enhance production with cost-effective measures.


Sign in / Sign up

Export Citation Format

Share Document