scholarly journals Multimedia Digital Signal Processing of Infrared Chemical Remote Sensing Based on Piecewise Linear Discriminant Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Meitao Gong

According to the basic principle of piecewise linear classifier and its application in the field of infrared chemical remote sensing monitoring, the characteristics of unilateral piecewise linear classifier applied to the infrared spectrum identification of chemical agents are studied. With the characteristic of separate transmission, the characteristic recovery with the total observed deviation is used for the model. The relaxation factors are used to replace the constrained conditions that cannot be optimized into constrained separate line segment calculation conditions. Experiments show that the result of signal recovery is better than traditional Wiener filtering and Richardson–Lucy methods.

2021 ◽  
Vol 19 (1) ◽  
pp. e1001
Author(s):  
Estanis Torres ◽  
Inmaculada Recasens ◽  
Simó Alegre

Aim of study: A portable VIS/NIR spectrometer and chemometric techniques were combined to identify bitter pit (BP) in Golden apples.Area of study: WorldwideMaterial and methods: Three different classification algorithms – linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support-vector machine (SVM) –were used in two experiments. In experiment #1, VIS/NIR measurements were carried out at postharvest on apples previously classified according to 3 classes (class 1: non-BP; class 2: slight symptoms; class 3: severe symptoms). In experiment #2, VIS/NIR measurements were carried out on healthy apples collected before harvest to determinate the capacity of the classification algorithms for detecting BP prior to the appearance of symptoms.Main results: In the experiement #1, VIS/NIR spectroscopy showed great potential in pitted apples detection with visibly symptoms (accuracies of 75–81%). The linear classifier LDA performed better than the multivariate non-linear QDA and SVM classifiers in discriminating between healthy and bitter pitted apples. In the experiment #2, the accuracy to predict bitter pit prior to the appearance of visible symptoms decreased to 44–57%.Research highlights: The identification of apples with bitter pit through VIS/NIR spectroscopy may be due to chlorophyll degradation and/or changes in intercellular water in fruit tissue.


2020 ◽  
Vol 10 (4) ◽  
pp. 471-477
Author(s):  
Merin Loukrakpam ◽  
Ch. Lison Singh ◽  
Madhuchhanda Choudhury

Background:: In recent years, there has been a high demand for executing digital signal processing and machine learning applications on energy-constrained devices. Squaring is a vital arithmetic operation used in such applications. Hence, improving the energy efficiency of squaring is crucial. Objective:: In this paper, a novel approximation method based on piecewise linear segmentation of the square function is proposed. Methods: Two-segment, four-segment and eight-segment accurate and energy-efficient 32-bit approximate designs for squaring were implemented using this method. The proposed 2-segment approximate squaring hardware showed 12.5% maximum relative error and delivered up to 55.6% energy saving when compared with state-of-the-art approximate multipliers used for squaring. Results: The proposed 4-segment hardware achieved a maximum relative error of 3.13% with up to 46.5% energy saving. Conclusion:: The proposed 8-segment design emerged as the most accurate squaring hardware with a maximum relative error of 0.78%. The comparison also revealed that the 8-segment design is the most efficient design in terms of error-area-delay-power product.


2014 ◽  
Vol 5 (2) ◽  
pp. 1-21 ◽  
Author(s):  
Arpita Sharma ◽  
Samiksha Goel

This paper proposes two novel nature inspired decision level fusion techniques, Cuckoo Search Decision Fusion (CSDF) and Improved Cuckoo Search Decision Fusion (ICSDF) for enhanced and refined extraction of terrain features from remote sensing data. The developed techniques derive their basis from a recently introduced bio-inspired meta-heuristic Cuckoo Search and modify it suitably to be used as a fusion technique. The algorithms are validated on remote sensing satellite images acquired by multispectral sensors namely LISS3 Sensor image of Alwar region in Rajasthan, India and LANDSAT Sensor image of Delhi region, India. Overall accuracies obtained are substantially better than those of the four individual terrain classifiers used for fusion. Results are also compared with majority voting and average weighing policy fusion strategies. A notable achievement of the proposed fusion techniques is that the two difficult to identify terrains namely barren and urban are identified with similar high accuracies as other well identified land cover types, which was not possible by single analyzers.


2019 ◽  
Vol 25 (1) ◽  
pp. 44-58 ◽  
Author(s):  
Edgar A. Terekhin ◽  
Tatiana N. Smekalova

Abstract The near chora (agricultural land) of Tauric Chersonesos was investigated using multiyear remote sensing data and field surveys. The boundaries of the land plots were studied with GIS (Geographic Information Systems) technology and an analysis of satellite images. Reliable reconstruction of the borders has been done for 231 plots (from a total of about 380), which is approximately 53% of the Chersonesean chora. During the last 50 years, most of the ancient land plots have been destroyed by modern buildings, roads, or forests. However, in the 1960s, a significant part of the chora was still preserved. Changes in preservation with time were studied with the aid of satellite images that were made in 1966 and 2015. During that period, it was found that the number of plots with almost-complete preservation decreased from 47 to 0. Those land plots whose preservation was better than 50% dropped from 104 to 4. A temporal map shows this decline in preservation. It was found that the areas of land plots could be determined accurately with satellite images; compared to field surveys, this accuracy was about 99%.


2018 ◽  
Vol 176 ◽  
pp. 08012
Author(s):  
Rei Kudo ◽  
Tomoaki Nishizawa ◽  
Akiko Higurashi ◽  
Eiji Oikawa

For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.


2014 ◽  
Vol 101 (1-3) ◽  
pp. 397-413 ◽  
Author(s):  
Gurkan Ozturk ◽  
Adil M. Bagirov ◽  
Refail Kasimbeyli

Author(s):  
Xiaodan Shi ◽  
Guorui Ma ◽  
Fenge Chen ◽  
Yanli Ma

This paper presents a kernel-based approach for the change detection of remote sensing images. It detects change by comparing the probability density (PD), expressed as kernel functions, of the feature vector extracted from bi- temporal images. PD is compared by defined kernel functions without immediate PD estimation. This algorithm is model-free and it can process multidimensional data, and is fit for the images with rich texture in particular. Experimental results show that overall accuracy of the algorithm is 98.9 %, a little bit better than that of the change vector analysis and classification comparison method, which is 96.7 % and 95.9 % respectively.


Sign in / Sign up

Export Citation Format

Share Document