scholarly journals Pelvic Floor Ultrasound under Particle Swarm Intelligent Optimization Algorithm in Preoperative and Postoperative Evaluation of Female Stress Urinary Incontinence

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongbin Zhang ◽  
Hezhou Li ◽  
Xin Zhao ◽  
Juan Wu ◽  
Xiao Liang ◽  
...  

This study aimed to explore the application of pelvic floor ultrasound under particle swarm intelligent optimization algorithm in the preoperative and postoperative evaluation of female stress urinary incontinence (SUI) and provide a theoretical basis for clinical diagnosis. In this study, 90 patients with SUI were enrolled, which were randomly and equally assigned into a blank group (healthy physical examination), control group (perineal ultrasound), and experimental group (pelvic floor ultrasound based on particle swarm intelligence optimization algorithm). The ultrasonic image segmentation and processing were carried out by a particle swarm intelligence optimization algorithm. Patients with stress incontinence were classified as group A, and patients without stress incontinence were classified as group B. The results of previous surgical examinations were the standard to judge the accuracy of pelvic floor ultrasound diagnosis based on the swarm intelligence optimization algorithm. The accuracy of diagnosing stress UI in the experimental group was 90.38%, which was significantly higher than that of the control group (54.31%) and the blank group (38.95%) ( P  < 0.05). The formation percentage of the urethral internal orifice in the experimental group was 82.5%, which was significantly higher than that of the control group (65.4%) and the blank group (12.5%), and there was a statistical difference among the groups ( P  < 0.05). In the resting state, the vertical spacing y between the neck of the bladder and the edge of the pubis of patients in group B was greater than that in group B, the horizontal spacing x between the neck of the bladder and the edge of the pubis was smaller than in the blank group, and there were statistical differences among the groups ( P  < 0.05). In the state of Valsalva, the vertical spacing y between the neck of the bladder and the edge of the pubis of patients in group B was smaller than that in group B, the horizontal spacing x between the neck of the bladder and the edge of the pubis was greater than that in group B. The distance of the bladder neck shifting downward was greater than that in group B, and there were statistical differences among the groups ( P  < 0.05). In short, the pelvic floor ultrasound based on the particle swarm intelligent optimization algorithm was accurate in the diagnosis of stress UI. The application of pelvic floor ultrasound in the diagnosis of UI provided image data objectively for clinical diagnosis and had a high application value.

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Daqing Wu ◽  
Jianguo Zheng

A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO) and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC) for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 159
Author(s):  
Nan Lin ◽  
Yongliang Chen ◽  
Haiqi Liu ◽  
Hanlin Liu

Selecting internal hyperparameters, which can be set by the automatic search algorithm, is important to improve the generalization performance of machine learning models. In this study, the geological, remote sensing and geochemical data of the Lalingzaohuo area in Qinghai province were researched. A multi-source metallogenic information spatial data set was constructed by calculating the Youden index for selecting potential evidence layers. The model for mapping mineral prospectivity of the study area was established by combining two swarm intelligence optimization algorithms, namely the bat algorithm (BA) and the firefly algorithm (FA), with different machine learning models. The receiver operating characteristic (ROC) and prediction-area (P-A) curves were used for performance evaluation and showed that the two algorithms had an obvious optimization effect. The BA and FA differentiated in improving multilayer perceptron (MLP), AdaBoost and one-class support vector machine (OCSVM) models; thus, there was no optimization algorithm that was consistently superior to the other. However, the accuracy of the machine learning models was significantly enhanced after optimizing the hyperparameters. The area under curve (AUC) values of the ROC curve of the optimized machine learning models were all higher than 0.8, indicating that the hyperparameter optimization calculation was effective. In terms of individual model improvement, the accuracy of the FA-AdaBoost model was improved the most significantly, with the AUC value increasing from 0.8173 to 0.9597 and the prediction/area (P/A) value increasing from 3.156 to 10.765, where the mineral targets predicted by the model occupied 8.63% of the study area and contained 92.86% of the known mineral deposits. The targets predicted by the improved machine learning models are consistent with the metallogenic geological characteristics, indicating that the swarm intelligence optimization algorithm combined with the machine learning model is an efficient method for mineral prospectivity mapping.


Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


2016 ◽  
pp. 1519-1544 ◽  
Author(s):  
Megha Vora ◽  
T. T. Mirnalinee

In the past two decades, Swarm Intelligence (SI)-based optimization techniques have drawn the attention of many researchers for finding an efficient solution to optimization problems. Swarm intelligence techniques are characterized by their decentralized way of working that mimics the behavior of colony of ants, swarm of bees, flock of birds, or school of fishes. Algorithmic simplicity and effectiveness of swarm intelligence techniques have made it a powerful tool for solving global optimization problems. Simulation studies of the graceful, but unpredictable, choreography of bird flocks led to the design of the particle swarm optimization algorithm. Studies of the foraging behavior of ants resulted in the development of ant colony optimization algorithm. This chapter provides insight into swarm intelligence techniques, specifically particle swarm optimization and its variants. The objective of this chapter is twofold: First, it describes how swarm intelligence techniques are employed to solve various optimization problems. Second, it describes how swarm intelligence techniques are efficiently applied for clustering, by imposing clustering as an optimization problem.


Sign in / Sign up

Export Citation Format

Share Document