scholarly journals Experimental Study on Physical and Dynamic Mechanical Properties of Temperature-Water Coupled Sandstone

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Ping ◽  
Dezhi Qi ◽  
Qi Diao ◽  
Chuanliang Zhang ◽  
Qi Gao ◽  
...  

In order to study the influence characteristics of water bath at different temperatures on rock physical and dynamic mechanical properties, a total of 15 groups of temperature-water bath treatment were carried out on coal mine roadway sandstone at 25°C∼95°C, and the basic physical parameters were tested. The impact compression test was carried out using the split Hopkinson pressure bar (SHPB) device. The results show that, with the increase of water bath temperature, the particle gap on the specimen surface increases. The volume, mass, and density of the specimens all increased with the increase of water bath temperature, and the increase was closely related to the water bath temperature. The dynamic compressive strength increases as a quadratic function of the water bath temperature, and the rate of increase is different before and after 45°C. The dynamic peak strain and average strain rate showed a quadratic function with the water bath temperature. The dynamic peak strain before 45°C decreased with the temperature increasing, and the dynamic peak strain after 45°C increased with the temperature increasing. The dynamic elastic modulus increased first and then decreased with the increase of water bath temperature and reached the maximum at 45°C. The failure pattern of sandstone is spalling. With the increase of water bath temperature, the fracture degree of the specimen gradually decreases.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yang Yang ◽  
Jianguo Wang

The effect of low temperature on dynamic mechanical properties of low-temperature frozen marble at a high strain rate was studied by a dynamic impact test. The influence of temperature changes (25°C–40°C), especially negative temperature changes, on dynamic strength, peak strain, and failure mode of the marble was analyzed. Combined with the fracture morphology, the reasons for the deterioration of dynamic mechanical strength of water-saturated marble at lower negative temperatures were investigated. The experimental results show that the dynamic mechanical properties of marble are significantly affected by the change of freezing temperature. The dynamic strength firstly decreases and then increases with the decrease of temperature in the range of 25°C to −20°C, but the dynamic strength decreases sharply after −20°C. The peak strain increases first, then decreases, and then increases, and the inflection point temperature of the change is −5°C and −20°C, respectively, which is completely different from the static load test results of frozen rock at low temperature. According to fracture morphology analysis, water-ice phase transformation at −5°C leads to the nucleation and expansion of a large number of microcracks and micropores in marble, and the interaction between slip separation cracks and microstructures caused by shear deformation under impact separates the massive crystals inside the rock into microscopic crystals, thus reducing the bearing capacity and strength of marble. From −5°C to −20°C, the ice medium and marble matrix contract when cooled, and the microcracks and micropores caused by the phase transition gradually close during the contraction process, the integrity of the rock is restored, and the dynamic strength of the rock is increased. At −20°C, there is a great difference in the shrinkage rate of the marble matrix and the ice medium, and the internal microstructure increases. Meanwhile, the impact amplifies the brittleness of the rock at low temperatures, leading to a sharp decrease in the dynamic strength of the marble.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2105 ◽  
Author(s):  
Alon Ratner ◽  
Richard Beaumont ◽  
Iain Masters

Strain rate sensitivity has been widely recognized as a significant feature of the dynamic mechanical properties of lithium-ion cells, which are important for their accurate representation in automotive crash simulations. This research sought to improve the precision with which dynamic mechanical properties can be determined from drop tower impact testing through the use of a diaphragm to minimize transient shock loads and to constrain off-axis motion of the indenter, specialized impact absorbers to reduce noise, and observation of displacement with a high speed camera. Inert pouch cells showed strain rate sensitivity in an increased stiffness during impact tests that was consistent with the poromechanical interaction of the porous structure of the jellyroll with the liquid electrolyte. The impact behaviour of the inert pouch cells was similar to that of an Expanded Polypropylene foam (EPP), with the exception that the inert pouch cells did not show hysteretic recovery under the weight of the indenter. This suggests that the dynamic mechanical behaviour of the inert pouch cells is analogous to a highly damped foam.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Yanbing Wang ◽  
Xingyuan Zhou ◽  
Ji Kong ◽  
Bingbing Yu

In order to examine the dynamic mechanical properties, dynamic crack proposition process, and energy loss of fractured rock under dynamic loading, the specimens with different fracture dig angles were processed with Φ50 mm × 50 mm cylindrical sandstone, the impact loading test was conducted on 50 mm stem diameter split Hopkinson pressure bar (SHPB) experiment platform, and the whole process of crack propagation and dynamic failure was recorded using a high-speed camera. As a result, the dynamic mechanical properties such as stress wave fluctuation characteristics, peak strength and stress-strain relationship, crack initiation angle, stress and other dependencies with prefabricated fracture angle of the prefabricated fracture specimens under high strain rate were obtained, and the incident energy, absorbed energy, and energy absorption rates were compared to investigate the energy loss law in the dynamic loading; on the contrary, the effects of different loading rates on the dynamic mechanical properties of the sandstone specimens were identified, and finally a set of findings were presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-10 ◽  
Author(s):  
Shuang Gong ◽  
Zhen Wang ◽  
Lei Zhou ◽  
Wen Wang

High in-situ stress and frequent dynamic disturbances caused by the mining process in deep coal mines can easily induce dynamic disasters such as coal burst. We conducted laboratory experiments to assess the effects of the axial stress loading and dynamic cyclic impact loading on the dynamic mechanical properties of burst-prone coals by using a modified split Hopkinson pressure bar (SHPB). Comparisons were made using two types of burst-prone and burst-resistant coal samples. The mineral components, organic macerals, and dynamic mechanical features of both burst-prone and burst-resistant coal samples were comparatively analyzed based on the obtained X-ray diffraction (XRD), optical microscope observations, and dynamic compressive stress-strain curves, respectively. The results of the microstructure analysis indicated a larger difference between the minimum and maximum reflectances of vitrinite for burst-prone coal. Compared to the burst-resistant coal samples, the burst-prone coals contained less corpocollinite and fusinite. While applying a high axial static load combined with cyclic impact load, the coal samples showed the characteristics of fatigue damage. The results also demonstrated that preaxial stress affected the burst resistance of coal samples. The greater the preaxial stress was, the less the coal samples could withstand the dynamic cyclic impact load. In comparison to the burst-resistant coal sample, the burst-prone coal sample showed a larger dynamic compressive strength and a lower deformation. They were also more positively capable of the propagation and activation of the coal burst. We believe that the results of the study are conducive to further understanding of the distribution of microcomponents of burst-prone coals. The results are also beneficial for realizing the dynamic mechanical characteristics of burst-prone coals under the impact of cyclic dynamic load.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Jingjiu Bi ◽  
Xuguang Li ◽  
Jie Liu ◽  
Yanjie Feng

Shale gas is the most important new energy source in the field of energy, and its exploitation is very important. The research on the dynamic mechanical properties of shale is the premise of exploitation. To study the dynamic mechanical properties of shale from the Changning-Weiyuan area of Sichuan Province, China, under confining pressure, we used a split Hopkinson pressure bar (SHPB) test system with an active containment device to carry out dynamic compression tests on shale with different bedding angles. (1) With active confining pressure, the shale experiences a high strain rate, and its stress-strain curve exhibits obvious plastic deformation. (2) For the same impact pressure, the peak stress of shale describes a U-shaped curve with an increasing bedding angle; besides, the peak stress of shale with different bedding angles increases linearly with rising confining pressure. The strain rate shows a significant confining pressure enhancement effect. With active confining pressure, the peak strain gradually decreases as the bedding angle increases. (3) As a result of the influence of different bedding angles, the dynamic elastic modulus of shale has obvious anisotropic characteristics. Shale with different bedding angles exhibits different rates of increase in the dynamic elastic modulus with rising confining pressure, which may be related to differences in the development of planes of weakness in the shale. The results of this study improve our understanding of the behavior of bedded shale under stress.


2016 ◽  
Vol 858 ◽  
pp. 86-90 ◽  
Author(s):  
Zhen Ming Chen ◽  
Yue Xiao Li ◽  
Zheng Zhang

Based on the SHPB (Split Hopkinson Pressure Bar), the dynamic mechanical properties of the granite in the borehole have been tested separately. The data shows that the impact dynamic strength increases as the precompression stress increases and can reach its maximum when the precompression stress is about 50% of the static tension strength. Meanwhile, the coupled static and dynamic strength increases as well, and it could reach about three times of the static precompression stress and one and half times of the dynamic strength respectively. Also, the failure model of the coupled static and dynamic loading is tension failure, which is the same as the static tension and conventional dynamic loading test.


2021 ◽  
Vol 13 (5) ◽  
pp. 889-898
Author(s):  
Yong-Ye Mu ◽  
Xiang-Long Li ◽  
Jian-Guo Wang ◽  
Zhi-Gao Leng

The cemented tailings backfill (CTB), which plays a significant role in the stability of mine structure, is made of cement, tailings, and water in a certain proportion. When blasting and excavating an underground mine, the CTB will be disturbed by blasting. The impact load of blasting has an impact on the stability of the CTB, which is directly related to the safety of mine construction. The mechanical behaviour of CTB is generally affected by the cement-tailings ratio (C/T) and average strain rate (ASR). Therefore, a series of impact experiments were carried out on three CTB specimens with different C/T using a SHPB. Combined with the experimental results, this account reports studies on the effects of C/T and ASR on the mechanical properties of CTB, and on the energy transfer laws of CTB during impact compression. The research results show that when the ASR is less than 70 s−1, the peak stress and the peak strain have the same trend, and both of them continue to increase with the increase of ASR.When the ASR exceeds 70 s−1, as the ASR increases, the peak stress continues to increase, but the peak strain decreases gradually. Afterwards, the law of energy transfer of the CTB specimen was analyzed. It was found that as the incident energy increased, the energy reflection ratio of the CTB increased. Both the energy transmitted ratio and the energy dissipation ratio decreased. The volumetric energy showed a sharp increase first and then a trend Because of the slowly increasing trend. Finally, according to the failure morphology of the CTB, it is found that the ASR and the C/T together affect the failure of the CTB. The failure model of the CTB is mainly split failure and crush failure.


2016 ◽  
Vol 1136 ◽  
pp. 543-548 ◽  
Author(s):  
Qing Feng Liu ◽  
Ning Chang Wang ◽  
Lan Yan ◽  
Feng Jiang ◽  
Hui Huang

The dynamic mechanical properties of oxygen free copper has been tested under the different strain rate (4700s-1~21000s-1) at the room temperature by split Hopkinson pressure bar (SHPB), the true stress-true strain curves has been obtained. Power-Law constitutive model and Johnson-Cook constitutive model have been built to fit the experimental result from SHPB test of oxygen free copper, meanwhile, the constitutive model can be applied to the simulation analysis of cutting process. The results show that the oxygen free copper is sensitive to the strain rate. In addition, the Johnson-Cook constitutive model predicts the plastic flow stress of the oxygen free copper more accurately than the Power-Law constitutive model at the high strain rate.


Sign in / Sign up

Export Citation Format

Share Document