scholarly journals Photocatalytic Degradation of Alizarin Red S, Amaranth, Congo Red, and Rhodamine B Dyes Using UV Light Modified Reactor and ZnO, TiO2, and SnO2 as Catalyst

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Rabia Rehman ◽  
Waheed-Uz-Zaman ◽  
Asma Raza ◽  
Warda Noor ◽  
Amna Batool ◽  
...  

The photocatalytic degradation of dyes (alizarin red S, amaranth, congo red, and rhodamine B) present in wastewater was performed with UV lamp. The catalysts employed for this investigation were ZnO, TiO2, and SnO2. The kinetic studies of dyes degradation followed first order reaction. ZnO was found to be most efficient photo-catalyst for degrading these dyes. The optimal result for alizarin red S was k = 0.2118 min−1, t1/2 = 3.27 min, and R2 = 0.7998, for amaranth was k = 0.146 min−1, t1/2 = 4.74 min, and R2 = 0.8348, for congo red was k = 0.2452 min−1, t1/2 = 2.8 min, and R2 = 0.8382, and for rhodamine B was k = 0.1915 min−1, t1/2 = 3.6 min, and R2 = 0.76.

Author(s):  
Nurul Sahida Hassan ◽  
Nurul Jamilah Roslani ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono ◽  
Nur Fatien Salleh ◽  
...  

In recent years, dyes are one of the major sources of the water contamination that lead to environmental problems. For instance, Rhodamine B (RhB) which was extensively used as a colorant in textile industries is toxic and carcinogenic. Among many techniques, photocatalytic degradation become the promising one to remove those dyes from industrial wastewater. Recently, graphene has shown outstanding performance in this application due to its intrinsic electron delocalisation which promotes electron transport between composite photocatalyst and pollutant molecules. While, copper oxide (CuO) is well-known has a lower bandgap energies compared to other semiconductors. Therefore, in this study, copper oxide supported on graphene (CuO/G) was prepared and its photocatalytic activity was tested on degradation of RhB. The catalysts were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. The results showed that the interaction between copper and graphene support could enhance the photocatalytic activity. The 5 wt% CuO/G was found to give the highest degradation (95%) of 10 mg L-1 of RhB solution at pH 7 using 1 g L-1 catalyst after 4 hours under visible light irradiation. The photodegradation followed the pseudo first-order Langmuir-Hinshelwood kinetic model. This study demonstrated that the CuO/G has a potential to be used in photocatalytic degradation of various organic pollutants.


2015 ◽  
Vol 11 (9) ◽  
pp. 3950-3958 ◽  
Author(s):  
Chandrakant Vedu Nandre ◽  
C.P. Sawant

In the present study photocatalytic degradation of hazardous water soluble alizarin red dye by using Fe-Co nanoparticles  has been investigated. Fe-Co nanoparticles was synthesized by chemical co-precipitation method and characterized by TEM, SEM, EDAX and XRD. The photocatalytic degradation have been studied with the help of variety of parameters such as catalytic dose, dye concentration, pH, contact time and most important chemical oxygen demand. It was observed that The photocatalytic degradation of alizarin red dye by using Fe-Co nanoparticles was an effective ,economic, ecofriendly and faster mode of removing dye from an aqueous solution. The optimum condition for the degradation of the dye was 50 mg/L,pH 8.0, catalyst dose 60 mg/L and contact time 60 minutes. The kinetic studies also have been studied.


Author(s):  
Katarzyna Siwińska-Ciesielczyk ◽  
Dariusz Świgoń ◽  
Piotr Rychtowski ◽  
Dariusz Moszyński ◽  
Agnieszka Zgoła-Grześkowiak ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1150
Author(s):  
Muhammad Hamza ◽  
Ataf Ali Altaf ◽  
Samia Kausar ◽  
Shahzad Murtaza ◽  
Nasir Rasool ◽  
...  

Dye removal through photocatalytic degradation employing nanomaterials as catalysts is a growing research area. In current studies, photocatalytic alizarin red (AR) dye degradation has been investigated by designing a series of Cr based manganese oxide nanomaterials (MH1–MH5). Synthesized nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy/energy dispersive x-ray, Brunauer–Emmett–Teller, and photoluminescence techniques and were utilized for photocatalytic AR dye degradation under UV light. AR dye degradation was monitored by UV–visible spectroscopy and percent degradation was studied for the effect of time, catalyst dose, different dye concentrations, and different pH values of dye solution. All the catalysts have shown more than 80% dye degradation exhibiting good catalytic efficiencies for dye removal. The catalytic pathway was analyzed by applying the kinetic model. A pseudo second-order model was found the best fitted kinetic model indicating a chemically-rate controlled mechanism. Values of constant R2 for all the factors studied were close to unity depicting a good correlation between experimental data.


Author(s):  
Abideen Idowu Adeogun ◽  
Ramesh Babu Balakrishnan

<span lang="EN-US">Electrocoagulation (EC) was used for the removal of anthraquinone dye, Alizarin Red S (ARS) from aqueous solution, the process was carried out in a batch electrochemical cell with Al electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process were investigated. Equilibrium was attained after 10 minutes at 30 oC. Pseudo-first-order, pseudo-second-order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic of the electrocoagulation process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analyzed using six isotherm models: Langmuir, Freudlinch, Redlich–Peterson, Temkin, Dubinin–Radushkevich and Sips isotherms and it was found that the data fitted well with Dubinin–Radushkevich and Sips isotherm model. The study showed that the process depend on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (∆G<sup>o</sup>, ∆H<sup>o</sup> and ∆S<sup>o</sup>) indicated that the process is spontaneous and endothermic in nature.</span>


2010 ◽  
Vol 658 ◽  
pp. 491-494 ◽  
Author(s):  
Leticia M. Torres-Martínez ◽  
Isaías Juárez-Ramírez ◽  
Juan S. Ramos-Garza ◽  
Francisco Vázquez-Acosta ◽  
Soo Wohn Lee

In this work it was carried out the synthesis of Bi2InTaO7 pyrochlore-type structure compound by the sol-gel method. By X-Ray powder diffraction the sol-gel compound calcined at 600°C showed the pyrochlore-type structure phase and by scanning electron microscopy its morphology revealed the presence of particles with size lower than 1 micron. Its chemical elemental composition was determined by EDS analysis. Results of SBET area and Eg values of this compound suggested higher properties than those obtained by the compound prepared by solid state reaction. Bi2InTaO7 sol-gel was used as active photocatalyst on the degradation reaction of organic compounds such as Alizarin Red S, and Red and Green Tide, under UV-light. Half time life results showed that Bi2InTaO7 sol-gel compound could be a good candidate for the degradation of organic compounds because after few minutes showed high efficiency on the degradation reaction of Alizarin Red S (t1/2 = 30 min), and Green Tide inactivation (t1/2 = 17 min).


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Mingjie Ma ◽  
Weijie Guo ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Guanyu Wang

TiO2/fine char (FC) photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB) aqueous solution under UV light irradiation. The results showed that TiO2was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.


Sign in / Sign up

Export Citation Format

Share Document