scholarly journals Sliding Impact Mechanism of Square Roadway Based on Complex Function Theory

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Decheng Ge ◽  
Fuxing Jiang ◽  
Cunwen Wang ◽  
Yang Chen ◽  
Chunyu Dong ◽  
...  

To clarify the process of stress change and plastic zone evolution of square roadways under high-stress conditions, the rotational square expansion plastic zone evolution model of square roadway was established by theoretical analysis, numerical simulation, and engineering verification. The shear slip impact stress criterion of square roadway based on complex variable function theory was studied, and the law of surrounding rock stress distribution, plastic zone expansion, elastic energy density, local energy release rate (LERR), and total energy release of square roadway were analyzed. The results show that the compressive stress is concentrated in the four corners of the roadway after the roadway excavated and transfers with the change of plastic zone. Main shear failures start from the four corners and develop in a rotating square shape, forming square failure zones I and II. The square failure zone I is connected with the roadway contour and rotated 45°. The square failure zone II is connected with the square failure zone I and rotated 45°. When the original rock stress is low, the surrounding rock tends to be stable after the square shear slip line field formed. When the original rock stress is high, the shear failure of the surrounding rock continues to occur after the square failure zone II formed, showing a spiral slip line. Corners of the square roadway and square failure zones I and II are the main energy accumulation and release areas. The maximum elastic energy density and LERR increase exponentially with the ratio of vertical stress to uniaxial compressive strength (Ic). When square corners of the roof are changed to round corners, the plastic zone of the roof expands to form an arch structure. The maximum elastic energy density decreases by 22%, which reduces the energy level and possibility of rock burst. This study enriches the failure mechanism of roadway sliding impact. It can provide a basic theoretical reference for the design of the new roadway section and support form based on the prevention of rock burst.

2019 ◽  
Vol 7 (10) ◽  
pp. 5201-5208 ◽  
Author(s):  
Zhicheng Zhang ◽  
Xiao Wang ◽  
Shaobo Tan ◽  
Qing Wang

A relaxor ferroelectric polymer exhibits record electromechanical performance, including the largest electrostrain of −13.4%, the highest elastic energy density of 3.1 J cm−3 and the best energy conversion efficiency of 0.5, among the known ferroelectric polymers. Notably, the excellent electromechanical responses are realized under much lower fields than those of ferroelectric polymers.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
MingZheng Zhu ◽  
Yugui Yang ◽  
Feng Gao ◽  
Juan Liu

The deformation and failure of tunnel surrounding rock is the result of tunnel excavation disturbance and rock stress release. When the local stress of surrounding rock exceeds the elastic limit of rock mass, the plastic analysis of surrounding rock must be carried out to judge the stability of tunnel. In this study, the Lade–Duncan yield criterion is used to calculate the analytic solutions for the surrounding rock in a tunnel, and the radius and displacement of the plastic zone are deduced using an equilibrium equation. The plastic zone radius and displacement based on Lade–Duncan criterion and Mohr–Coulomb criterion were compared by using single-factor analysis method under the different internal friction angles, in situ stresses, and support resistances. The results show that the solutions of the radius and displacement of plastic zone calculated by the Lade–Duncan criterion are close to those of Mohr–Coulomb criterion under the high internal friction angle and support resistance or low in situ rock stress; however, the radius and displacement of the plastic zone calculated by the Lade–Duncan criterion are larger under normal circumstances, and the Lade–Duncan criterion is more applicable to the stability analysis of the surrounding rock in a tunnel.


2006 ◽  
Vol 47 (8) ◽  
pp. 1981-1984 ◽  
Author(s):  
K. Wang ◽  
D. Pan ◽  
M. W. Chen ◽  
W. Zhang ◽  
X. M. Wang ◽  
...  

2003 ◽  
Vol 785 ◽  
Author(s):  
Cheng Huang ◽  
Ji Su ◽  
Q.M. Zhang

ABSTRACTAmong various electroactive polymer (EAP) actuator materials developed recently, the class of EAPs whose responses are stimulated by external electrical fields (often known as the field type EAPs) is especially attractive due to their high strain level and elastic energy density. However, for most field type EAPs, dielectric constant is low, generally less than 10. Consequently, these polymers usually require high electric fields (>100 V/μm) to generate high elastic energy density which limits their applications. In this paper, we will investigate some avenues to significantly raise the dielectric constant and electromechanical response in field type polymeric materials. By exploiting an all-organic composite approach in which high-dielectric-constant organic particulates were blended with a polymer matrix, a polymeric-like material can reach a dielectric constant higher than 400, which results in a significant reduction of the applied field to generate high strain with high elastic energy density. An all-polymer high-dielectric-constant (K>1,000 @1 kHz) percolative composite material was fabricated by the combination of conductive polyaniline particles (K>105) within a fluoroterpolymer matrix (K>50). These high-K polymer hybrid materials also exhibit high electromechanical responses under low applied fields. In addition, a three-component all-organic composite was designed and prepared to improve the dielectric constant and the electromechanical response, as well as the stability of the composites, in which a high-dielectric-constant organic dielectric phase and an organic conductive phase were embedded into the soft dielectric elastomer matrix.


2009 ◽  
Vol 48 (5) ◽  
pp. 051002 ◽  
Author(s):  
Bernard Gil ◽  
Olivier Briot ◽  
Pierre Bigenwald

2004 ◽  
Vol 116 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Mark F. Hamilton ◽  
Yurii A. Ilinskii ◽  
Evgenia A. Zabolotskaya

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Liuliu Li ◽  
Fengqiang Gong

The elastic energy stored in deep rock in three-dimensional stress environment is the energy source of rockburst. To investigate the energy storage characteristics of deep rock under different confining pressures, a series of triaxial single-cyclic loading-unloading compression tests were conducted on red sandstone specimens under eight confining pressures. The input energy density, elastic energy density, and dissipative energy density of the specimen in axial, circumferential, and total directions can be obtained by the area diagram integration method. The results show that the input energy density in the axial direction accounts for the largest logarithmic proportion of the total input energy density, and the relationship between all energy density parameters and unloading level can be described by quadratic function. In the axial direction, there is a linear function relationship among elastic energy density, dissipative energy density, and input energy density. In the circumferential direction, there is a quadratic function relationship among elastic energy density, dissipative energy density, and input energy density. For the total energy density parameters of the rock specimen, the relationship among elastic energy density, dissipative energy density, and input energy density conforms to the quadratic function. According to the above correlation function, the elastic energy stored in deep rock under different confining pressures can be accurately obtained, which provides a foundation for studying the mechanism of rockburst under three-dimensional unloading from the energy perspective.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3761 ◽  
Author(s):  
Kong ◽  
Jiang ◽  
Jiang ◽  
Wu ◽  
Chen ◽  
...  

Microseismic events commonly occur during the excavation of long wall panels and often cause rock-burst accidents when the roadway is influenced by dynamic loads. In this paper, the Fast Lagrangian Analysis of Continua in 3-Dimensions (FLAC3D) software is used to study the deformation and rock-burst potential of roadways under different dynamic and static loads. The results show that the larger the dynamic load is, the greater the increase in the deformation of the roadway under the same static loading conditions. A roadway under a high static load is more susceptible to deformation and instability when affected by dynamic loads. Under different static loading conditions, the dynamic responses of the roadway abutment stress distribution are different. When the roadway is shallow buried and the dynamic load is small, the stress and elastic energy density of the coal body in the area of the peak abutment stress after the dynamic load are greater than the static calculations. The dynamic load provides energy storage for the coal body in the area of the peak abutment stress. When the roadway is deep, a small dynamic load can still cause the stress in the coal body and the elastic energy density to decrease in the area of the peak abutment stress, and a rock-burst is more likely to occur in a deep mine roadway with a combination of a high static load and a weak dynamic load. When the dynamic load is large, the peak abutment stress decreases greatly after the dynamic loading, and under the same dynamic loading conditions, the greater the depth the roadway is, the greater the elastic energy released by the dynamic load. Control measures are discussed for different dynamic and static load sources of rock-burst accidents. The results provide a reference for the control of rock-burst disasters under dynamic loads.


Sign in / Sign up

Export Citation Format

Share Document