scholarly journals Analytical Solution of Tunnel Surrounding Rock for Stress and Displacement Based on Lade–Duncan Criterion

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
MingZheng Zhu ◽  
Yugui Yang ◽  
Feng Gao ◽  
Juan Liu

The deformation and failure of tunnel surrounding rock is the result of tunnel excavation disturbance and rock stress release. When the local stress of surrounding rock exceeds the elastic limit of rock mass, the plastic analysis of surrounding rock must be carried out to judge the stability of tunnel. In this study, the Lade–Duncan yield criterion is used to calculate the analytic solutions for the surrounding rock in a tunnel, and the radius and displacement of the plastic zone are deduced using an equilibrium equation. The plastic zone radius and displacement based on Lade–Duncan criterion and Mohr–Coulomb criterion were compared by using single-factor analysis method under the different internal friction angles, in situ stresses, and support resistances. The results show that the solutions of the radius and displacement of plastic zone calculated by the Lade–Duncan criterion are close to those of Mohr–Coulomb criterion under the high internal friction angle and support resistance or low in situ rock stress; however, the radius and displacement of the plastic zone calculated by the Lade–Duncan criterion are larger under normal circumstances, and the Lade–Duncan criterion is more applicable to the stability analysis of the surrounding rock in a tunnel.

2019 ◽  
Vol 17 (1) ◽  
pp. 138-147
Author(s):  
Ming Ji ◽  
Hongjun Guo

Abstract In-situ rock stress was measured in the development roadway of Gucheng coal mine at +420 m level by using the stress relief method of hollow inclusion. The results show that the first principal stress was the vertical stress, the maximum horizontal principal stresses were distributed in the range of N10°E and N20°E, and the average side pressure coefficient was 0.83. There was a large difference between the maximum horizontal principal stress and the minimum horizontal principal stress, and the calculated average ratio was 2.02. A spatial stress conversion model of the horizontal roadway based on the measured in-situ rock stresses was built, and the distribution laws of stress and displacement of the surrounding rock of the roadway were analyzed in depth along the changing radial direction. According to the Mohr–Coulomb failure criterion, an asymmetric surrounding rock plastic zone was obtained and the plastic failure radius was 5.0 m. Considering the roadway-surrounding rock differential control, the stronger support in the risk areas was practiced and validated. The work in this paper would provide some ideas for the design and optimization of the support parameters for roadway engineering.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yue Yuan ◽  
Weijun Wang ◽  
Shuqing Li ◽  
Yongjian Zhu

In order to reveal the failure mechanism of the deep roadway under mining-induced pressure in coal mine, the boundary equations for the plastic zone around the deep roadway were deduced, and then the evolution laws for morphology of the plastic zone and the relationship between the morphological indexes and the stability of surrounding rock were discussed. The results show that, for the deep roadway, the effect of mining on the plastic zone is more sensitive than that on the shallow one. Even if the changes of mining influence are small, they may also cause extremely serious plastic failure of surrounding rock masses, leading to the sudden instability of the roadway. When the plastic wings of the plastic zone are approximately perpendicular to the roof, floor, or sidewall, the large deformation and failure of the deep roadway are very likely to occur. Compared with the index of the uniformity coefficient, the irregular shape coefficient can be used to better characterize the differences in the plastic zone morphology. Finally, a case study was provided to apply the principles for the formation and extension of a butterfly-shaped plastic zone.


2011 ◽  
Vol 90-93 ◽  
pp. 353-358
Author(s):  
Chao Ru Liu

By analyzing a large number of in-situ stress data measured in underground deep coal mines, two types of in-situ stress fields exit in deep coal mines, σHvh and σvHh, which influences on the stability of underground deep roadways are analyzed by means of numerical simulation. The results show that the destruction of surrounding rock varies greatly in equal value stress fields with different types. In σHvh, the plastic zone of roof and floor of roadways is larger than the two sides, and stress concentration appears in front of heading face and in roof and floor of roadways, but not in two sides, more considerations should be given to the roof and floor supporting. In σvHh, plastic zone of two sides is larger than the roof and floor, and stress concentration appears in front of heading face and the sides of roadways, but not in the roof and floor, so more supporting considerations should be given to the two sides while protecting the roof.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haian Liang ◽  
Tan Tang ◽  
Longpeng Zhang ◽  
Xiaodong Liu ◽  
Shuai Liu ◽  
...  

This paper focuses on the stability of the high-level radioactive waste (HLW) in the proposed clay rock in Tamusu area of China. The in-situ stress as well as the variational characteristics of ambient temperature caused by nuclide decay during HLW storage should be noticeable. A series of thermal property tests and thermo-mechanical coupled strength (T-M) tests of rock samples in the target formation are carried out. Then the stability of surrounding rock of an HLW under the combination of heat release from HLW and in-situ stress is simulated and analyzed by numerical method. Thermal properties of Tamusu clay rock samples are obtained by testing their thermal conductivity. In order to obtain the characteristics and the failure modes of rock samples at different temperatures, the T-M coupling experiments in the temperature range of 100°C are conducted. Numerical model for simulating the state of operation of the nuclear waste tank buried in the tunnel within 100 years is constructed. A thermal boundary by the heat release equation of HLW and the real in-situ stress level in Tamusu area are considered in the model. While, the variation law of surrounding rock’s temperature, stress, and deformation corresponding to the embedding time is obtained from the numerical calculation. Finally, the stability of the deep geological repository is comprehensively evaluated. The results show that the temperature has a significant impact on the T-M coupling characteristics of Tamusu clay rock, and the proposed repository numerical model has no large deformation and failure problems in 100 years. However, the temperature of the surrounding rock of the repository may exceed the safety standard value during the operation period.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu ◽  
Mengxi Liu ◽  
Gaofeng Li ◽  
...  

In order to further explore the deformation and failure essence of the deep coal body, based on the characteristics of surrounding rock stress adjustment before and after solid coal roadway excavation, an experiment of unloading confining pressure and loading axial pressure of the coal body was designed and conducted in this study. Based on test results, the failure mechanics and energy characteristics of the coal body were analyzed through experiments. Rapid unloading is considered a key factor contributing to lateral deformation and expansion failure, which exacerbates the deterioration of coal body and reduces the deformation energy storage capacity of coal. On the other hand, the larger loading rate tends to shorten the accumulation time of microcracks and cause damage to the coal body, resulting in strengthening the coal body and improving energy storage. Under the circumstance that the coal body is destroyed, the conversion rates of the internal deformation energy and dissipated energy are more significantly affected by unloading rate. The increasing unloading rate and rapid decreases in the conversion rate of deformation energy make the coal body more vulnerable to damage. Under the same stress conditions, the excavation unloading is more likely to deform, destroy, or even throw the coal than the experiment unloading. In order to reduce or avoid the occurrence of deep roadway excavation accidents, the understanding of the excavation unloading including possible influencing factors and the monitoring of the surrounding rock stress and energy during the excavation disturbance should be strengthened. It can be used as the basis for studying the mechanism of deformation and failure of coal and rock and dynamic disasters in deep mines, as well as the prediction, early warning, prevention, and control of related dynamic disasters.


2018 ◽  
Vol 175 ◽  
pp. 04016
Author(s):  
NIU Yan ◽  
Ji Yafei ◽  
Wang Zhao

Tunnel excavation will lead to the immediate surrounding rock unloading caused by the surrounding rock stress release, the stability of the surrounding rock have a certain impact. In this paper, finite element software ANSYS and finite difference software FLAC3D are used to simulate the excavation and lining process of circular tunnel. The influence of excavation on the rock stability around circular tunnel is analyzed, and the effect of applying lining on the stability of surrounding rock is analyzed. Evaluation criteria selection hole displacement, stress and plastic area of three factors.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Huabin Zhang ◽  
Qingqing Zhang ◽  
Laigui Wang

In this study, an analytical solution of stress, strain, and displacement, in the elastic and plastic zone is proposed. The solution is derived on the basis of ideal elastoplastic mechanical model of spherical salt cavern with shear dilatation behavior, by adopting Hoek-Brown (H-B) criterion. The solution obtains not only in small and large strain stage but also in creep stage. The proposed solution is validated, by comparison of the obtained results with numerical results in FLAC3D. The results indicate that the result obtained adopting the H-B criterion is closer to that one obtained adopting the Mohr-Coulomb (M-C). The H-B criterion is more applicable for the salt cavern construction as it considers the structural characteristics of the rock salt formation. The displacement difference obtained by two different methods decreases with the increase of GSI or running pressure, but it increases with the enlarged angle of dilation. The influence of different assumptions of elastic strain of plastic zone on displacements is more significant under large strain conditions. The influence of the angle of dilation on displacements is more obvious when the elastic strain of plastic zone is given to stationary values, and the influence degree increases with the enlarged angle of dilation. Under the same conditions, the creep displacement decreases with the increase of GSI, and both the creep displacement and the effect degree enhance with the enlarged dilation angle. The proposed solutions can be used in the stability analysis of surrounding rock in the construction and operation of salt cavern storage.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Qifeng Guo ◽  
Jiliang Pan ◽  
Xinghui Wu ◽  
Xun Xi ◽  
Meifeng Cai

According to the strain-softening characteristics of rock mass, an ideal elastic strain-softening model is developed, and the surrounding rock of tunnels is subdivided into the plastic broken zone, plastic strain-softening zone, and elastic zone. Based on the generalized spatially mobilized plane criterion, an elastic-plastic analytical solution of a circular tunnel is derived. The effects of intermediate principal stress, strain softening, and dilatancy are considered in the unified solution. The stress, displacement, and plastic zone radius of surrounding rock based on the SMP criterion are compared with those based on the Mohr–Coulomb criterion. Furthermore, the effects of parameters such as the softening modulus, dilatancy angle, and internal friction angle on the deformation and stress of tunnels are discussed. It has been found that the larger the dilatancy angle is, the larger the plastic zone displacement and the radius of the broken zone are. The larger the internal friction angle, the smaller the sizes of the plastic zone, the strain-softening zone, and the broken zone are. The deformation of surrounding rock in the broken zone is more sensitive to the internal friction angle than that in the strain-softening zone. The unified solution based on the SMP criterion provides a well understanding for the elastic-plastic state of tunnels, which can be the guidance for tunnel excavations and support designs.


2011 ◽  
Vol 90-93 ◽  
pp. 1900-1903
Author(s):  
Fu Ming Wang ◽  
Xiao Long Li ◽  
Yan Hui Zhong ◽  
Xiao Guang Chen

Taking Chaijiazhuang Tunnel of Lingnan Expressway as project background, the stability analysis of surrounding rock was performed based on the coupled fluid-solid theory. The distributions of stress field, displacement field and plastic zone of rock mass after excavation of tunnel were discussed considering coupled effect between flow and stress under the condition of different rock level and tunnel depth. Compared with the calculation results of not considering coupling effect, the maximum deformation, maximum principle stress and plastic zone size of wall rock were obviously increased when considering coupling effect, which showed a remarkable influence of coupled fluid-solid effect on the stability of tunnel surrounding rock. Some conclusions were drawn and may provide some guidance to the design and construction of tunnels in water-rich strata.


Sign in / Sign up

Export Citation Format

Share Document