scholarly journals Multi-channel Convolutional Neural Network Feature Extraction for Session Based Recommendation

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhenyan Ji ◽  
Mengdan Wu ◽  
Yumin Feng ◽  
José Enrique Armendáriz Íñigo

A session-based recommendation system is designed to predict the user’s next click behavior based on an ongoing session. Existing session-based recommendation systems usually model a session into a sequence and extract sequence features through recurrent neural network. Although the performance is greatly improved, these procedures ignore the relationships between items that contain rich information. In order to obtain rich items embeddings, we propose a novel Recommendation Model based on Multi-channel Convolutional Neural Network for session-based recommendation, RMMCNN for brevity. Specifically, we capture items' internal features from three dimensions through multi-channel convolutional neural network firstly. Next, we merge the internal features with external features obtained by a GRU unit. Then, both internal features and external features are merged by an attention mechanism together as the input of the transformation function. Finally, the probability distribution is taken as the output after the softmax function. Experiments on various datasets show that our method's precision and recommendation performance are better than those of other state-of-the-art approaches.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Ricardo Fonseca ◽  
Oscar Guarnizo ◽  
Diego Suntaxi ◽  
Alfonso Cadiz ◽  
Werner Creixell

2021 ◽  
Vol 9 ◽  
Author(s):  
Shui-Hua Wang ◽  
Ziquan Zhu ◽  
Yu-Dong Zhang

Objective: COVID-19 is a sort of infectious disease caused by a new strain of coronavirus. This study aims to develop a more accurate COVID-19 diagnosis system.Methods: First, the n-conv module (nCM) is introduced. Then we built a 12-layer convolutional neural network (12l-CNN) as the backbone network. Afterwards, PatchShuffle was introduced to integrate with 12l-CNN as a regularization term of the loss function. Our model was named PSCNN. Moreover, multiple-way data augmentation and Grad-CAM are employed to avoid overfitting and locating lung lesions.Results: The mean and standard variation values of the seven measures of our model were 95.28 ± 1.03 (sensitivity), 95.78 ± 0.87 (specificity), 95.76 ± 0.86 (precision), 95.53 ± 0.83 (accuracy), 95.52 ± 0.83 (F1 score), 91.7 ± 1.65 (MCC), and 95.52 ± 0.83 (FMI).Conclusion: Our PSCNN is better than 10 state-of-the-art models. Further, we validate the optimal hyperparameters in our model and demonstrate the effectiveness of PatchShuffle.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shui-Hua Wang ◽  
Kaihong Wu ◽  
Tianshu Chu ◽  
Steven L. Fernandes ◽  
Qinghua Zhou ◽  
...  

Aim. This study proposes a new artificial intelligence model based on cardiovascular computed tomography for more efficient and precise recognition of Tetralogy of Fallot (TOF). Methods. Our model is a structurally optimized stochastic pooling convolutional neural network (SOSPCNN), which combines stochastic pooling, structural optimization, and convolutional neural network. In addition, multiple-way data augmentation is used to overcome overfitting. Grad-CAM is employed to provide explainability to the proposed SOSPCNN model. Meanwhile, both desktop and web apps are developed based on this SOSPCNN model. Results. The results on ten runs of 10-fold crossvalidation show that our SOSPCNN model yields a sensitivity of 92.25 ± 2.19 , a specificity of 92.75 ± 2.49 , a precision of 92.79 ± 2.29 , an accuracy of 92.50 ± 1.18 , an F1 score of 92.48 ± 1.17 , an MCC of 85.06 ± 2.38 , an FMI of 92.50 ± 1.17 , and an AUC of 0.9587. Conclusion. The SOSPCNN method performed better than three state-of-the-art TOF recognition approaches.


2021 ◽  
pp. 1-10
Author(s):  
Chien-Cheng Leea ◽  
Zhongjian Gao ◽  
Xiu-Chi Huanga

This paper proposes a Wi-Fi-based indoor human detection system using a deep convolutional neural network. The system detects different human states in various situations, including different environments and propagation paths. The main improvements proposed by the system is that there is no cameras overhead and no sensors are mounted. This system captures useful amplitude information from the channel state information and converts this information into an image-like two-dimensional matrix. Next, the two-dimensional matrix is used as an input to a deep convolutional neural network (CNN) to distinguish human states. In this work, a deep residual network (ResNet) architecture is used to perform human state classification with hierarchical topological feature extraction. Several combinations of datasets for different environments and propagation paths are used in this study. ResNet’s powerful inference simplifies feature extraction and improves the accuracy of human state classification. The experimental results show that the fine-tuned ResNet-18 model has good performance in indoor human detection, including people not present, people still, and people moving. Compared with traditional machine learning using handcrafted features, this method is simple and effective.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Siqi Tang ◽  
Zhisong Pan ◽  
Xingyu Zhou

This paper proposes an accurate crowd counting method based on convolutional neural network and low-rank and sparse structure. To this end, we firstly propose an effective deep-fusion convolutional neural network to promote the density map regression accuracy. Furthermore, we figure out that most of the existing CNN based crowd counting methods obtain overall counting by direct integral of estimated density map, which limits the accuracy of counting. Instead of direct integral, we adopt a regression method based on low-rank and sparse penalty to promote accuracy of the projection from density map to global counting. Experiments demonstrate the importance of such regression process on promoting the crowd counting performance. The proposed low-rank and sparse based deep-fusion convolutional neural network (LFCNN) outperforms existing crowd counting methods and achieves the state-of-the-art performance.


2021 ◽  
Vol 21 (01) ◽  
pp. 2150005
Author(s):  
ARUN T NAIR ◽  
K. MUTHUVEL

Nowadays, analysis on retinal image exists as one of the challenging area for study. Numerous retinal diseases could be recognized by analyzing the variations taking place in retina. However, the main disadvantage among those studies is that, they do not have higher recognition accuracy. The proposed framework includes four phases namely, (i) Blood Vessel Segmentation (ii) Feature Extraction (iii) Optimal Feature Selection and (iv) Classification. Initially, the input fundus image is subjected to blood vessel segmentation from which two binary thresholded images (one from High Pass Filter (HPF) and other from top-hat reconstruction) are acquired. These two images are differentiated and the areas that are common to both are said to be the major vessels and the left over regions are fused to form vessel sub-image. These vessel sub-images are classified with Gaussian Mixture Model (GMM) classifier and the resultant is summed up with the major vessels to form the segmented blood vessels. The segmented images are subjected to feature extraction process, where the features like proposed Local Binary Pattern (LBP), Gray-Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRM) are extracted. As the curse of dimensionality seems to be the greatest issue, it is important to select the appropriate features from the extracted one for classification. In this paper, a new improved optimization algorithm Moth Flame with New Distance Formulation (MF-NDF) is introduced for selecting the optimal features. Finally, the selected optimal features are subjected to Deep Convolutional Neural Network (DCNN) model for classification. Further, in order to make the precise diagnosis, the weights of DCNN are optimally tuned by the same optimization algorithm. The performance of the proposed algorithm will be compared against the conventional algorithms in terms of positive and negative measures.


Sign in / Sign up

Export Citation Format

Share Document